
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

CheckIt: publication tool for gestors of
Semantic vocabulary of terms - frontend

Filip Kopecký

Supervisor: Ing. Michal Med, Ph.D.
Supervisor–specialist: Ing. Martin Ledvinka, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
May 2023

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483821 Osobní číslo:Filip Jméno:Kopecký Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:

Softwarové inženýrství Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

CheckIt: publikační nástroj pro správce Sémantického slovníku pojmů - frontend

Název diplomové práce anglicky:

CheckIt: publication tool for gestors of Semantic vocabulary of terms - frontend

Pokyny pro vypracování:
1) Become familiar with existing tools of the Assembly line for creation of Semantic vocabulary of Terms (SSP), designed
and created in the project Quality Open Data and Infrastructure (KODI) on the Ministry of Interior of the Czech Republic.
2) Analyze processes in the Assembly line for creation, editing and publication of semantic vocabularies.
3) Design a tool for publication of the new versions of the semantic vocabularies created or edited by the tools of Assembly
line. Focus on the frontend part of the tool.
4) Implement design created in the previous point. Consider involvement of the tool into the Assembly line environment.
5) Evaluate functionality and user friendliness of a tool by the user testing (e.g. System Usability Scale or similar) for the
given scenarios, focused on communication and conflict resolution.

Seznam doporučené literatury:
Křemen, P.; Nečaský, M., Improving discoverability of Open Government Data with rich metadata descriptions using
Semantic Government Vocabulary, Journal of Web Semantics. 2019, 55 1-20. ISSN 1570-8268.
Křemen P., Pojmové znalostní grafy ve veřejné správě, available from:
https://data.gov.cz/%C4%8Dl%C3%A1nky/pojmov%C3%A9-znalostn%C3%AD-grafy-ve-ve%C5%99ejn%C3%A9-spr%C3%A1v%C4%9B
Křemen P.; Med M.;Nečaský M.;Domanská R., Metodika tvorby a údržby sémantického slovníku pojmů veřejné správy,
2022
Křemen P.; Med M.;Nečaský M.;Domanská R., Koncepce sémantického slovníku pojmů pro potřeby konceptuálního
datového modelování agend, 2022
Fowler, M: Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Med, Ph.D. katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 26.05.2023 Datum zadání diplomové práce: 26.01.2023

Platnost zadání diplomové práce: 22.09.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Michal Med, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my supervisor Ing.
Michal Med, Ph.D., for the opportunity
to work on this topic and for his guidance.
Also, I would like to thank Ing. Martin
Ledvinka, Ph.D., for his help and relevant
comments. Lastly, I want to thank my
mother for her continuous support during
my university studies.

Declaration
I declare that I prepared the submitted
work independently and have listed all the
literature used.

In Prague, 25. May 2023

v

Abstract
The motivation for this thesis was to ana-
lyze the current review process of the As-
sembly line, identify its shortcomings, and
propose a new review process that will be
available to users through a new Assembly
line application. The thesis explains the
technologies of the Semantic Web used
by the Assembly line and describes its
features and tools in depth. The review
process and its execution in the Assembly
line are revised, and a solution based on
the identified flaws in the current imple-
mentation is proposed. The thesis then
focuses on the software analysis of the
new solution, starting with defining the
application’s scope using functional and
non-functional requirements. Then the
technologies used for building web applica-
tions are introduced and compared, result-
ing in a selection of technologies suitable
for the newly defined review process and
the Assembly line’s technological stack.
The thesis then explains how the new web
application was implemented and what
strategies were used to ensure a good user
experience. Lastly, the implementation
was tested by users to evaluate the appli-
cation’s usability.

Keywords: web application, RDF,
Assembly line, SGoV, Semantic Web

Supervisor: Ing. Michal Med, Ph.D.

Abstrakt
Motivací této diplomové práce byla ana-
lýza současného procesu revize změn ve
Výrobní lince, identifikace jeho nedo-
statků a navržení nového procesu který
bude uživatelům zpřístupněn skrze nově
vytvořenou aplikaci ve Výrobní lince.
Práce vysvětluje technologie Sémantic-
kého webu, které Výrobní linka používá
a přibližuje její vlastnosti a nástroje v ní
obsažené. Zabývá se rozborem současné
implementace revizního procesu a navr-
huje řešení, které by odstraňovalo její ne-
dostatky. Poté se práce soustředí na soft-
warovou analýzu nového řešení, počínajíc
definicí rozsahu aplikace skrze funkční a
nefunkční požadavky. Práce posléze po-
rovnává technologie používané pro vývoj
webových aplikací. Z popsaných technolo-
gií je vybráno řešení, které nejvíce vy-
hovuje rozsahu aplikace a které půjde
nejlépe začlenit do ekosystému Výrobní
linky. Následuje popis implementace nové
webové aplikace, společně s popisem tech-
nik, které byly použity ke zlepšení uživa-
telské přívětivosti systému. Uskutečněná
implementace byla závěrem podrobena
uživatelskému testování, které ověřovalo
celkovou použitelnost systému.

Klíčová slova: webová aplikace, RDF,
Výrobní linka, SSP, Semantický web

Překlad názvu: CheckIt: publikační
nástroj pro správce Sémantického
slovníku pojmů - frontend

vi

Contents
1 Introduction 1

2 Data model description 5

2.1 RDF . 5

2.2 Triples . 6

2.2.1 IRI . 7

2.2.2 Literal . 7

2.2.3 Blank node 8

2.3 Turtle . 9

2.4 RDF Vocabularies 11

2.4.1 SKOS . 12

2.4.2 DCMI . 13

2.4.3 OWL . 15

3 Assembly line 17

3.1 Overview and basic concepts . . . 17

3.1.1 Term . 18

3.1.2 Vocabulary structure 18

3.2 Tools . 18

3.2.1 Mission Control 18

3.2.2 TermIt 19

3.2.3 OntoGrapher 20

3.3 Technical overview 20

3.3.1 Front-end applications 20

3.3.2 Servers 21

3.3.3 Security 21

3.3.4 Database 22

4 Process analysis 23

4.1 Review process 23

4.1.1 Current platform - GitHub . . 24

4.1.2 New platform - CheckIt 27

4.1.3 Conclusion 28

4.2 Process entities 29

4.2.1 Change 29

4.2.2 Vocabulary changes 29

4.2.3 Publication 29

4.3 Process participants 30

4.3.1 User . 30

4.3.2 Vocabulary gestor 30

4.3.3 Administrator 31

4.4 Processes . 32

4.4.1 Requesting a gestor role 32

4.4.2 Publication review 32

4.5 Summary . 37

5 Design of the system 39

5.1 Functional requirements 39

5.2 Non-functional requirements . . . 43

6 Technical analysis 45

6.1 Front-end library/framework . . . 45

6.1.1 React . 45

6.1.2 Angular 46

vii

6.1.3 Vue.js . 47

6.1.4 Conclusion 47

6.2 Component library 47

6.3 JavaScript Build Process 48

6.3.1 Transpilation 48

6.3.2 Bundling 49

6.4 Build tool 49

6.4.1 Create React App 50

6.4.2 Vite . 50

6.4.3 Conclusion 51

6.5 Back end . 52

7 Implementation 53

7.1 Technological stack 53

7.2 Authentication 54

7.3 User experience 54

7.3.1 Rendering of large datasets . . 55

7.3.2 Optimistic updates 56

7.4 Overview of implemented features 57

7.4.1 User-friendly data visualization 57

7.4.2 Communication 58

7.4.3 Defined user access 59

7.4.4 Collaboration 59

8 Testing 63

8.1 Unit testing 64

8.2 Scenario testing 64

8.2.1 System usability scale 64

8.3 User testing 65

8.3.1 Identified shortcomings 66

9 Conclusion 69

9.1 Evaluation 70

9.2 Future work 70

9.2.1 Responsivity improvements . . 70

9.2.2 Extension of known predicate
IRIs . 70

9.2.3 Editing of comments 71

9.2.4 Diagram changes 71

9.2.5 Full incorporation into the AL 71

Bibliography 73

A Testing scenarios 79

A.1 Logging in 79

A.2 Requesting a gestor role 79

A.3 Positive review 79

A.4 Approving publication 80

A.5 Negative review 80

B Screenshots of the application 81

B.1 Home page 81

B.2 Administrator panel 82

B.3 Publications 84

B.4 Others . 86

C Content of electronic attachment 87

viii

Figures
2.1 Triple visualization using nodes

connected by an arc 6

2.2 Using blank node as a resource . . 8

3.1 Visualization of project separation
inside the graph database 19

4.1 Vocabulary manipulation workflow
- current state 25

4.2 Vocabulary manipulation workflow
- new state . 28

4.3 Publication containing
modifications to two vocabularies . 30

4.4 User hierarchy of the new system 31

4.5 Requesting a gestor role 34

4.6 New review process overview . . . 35

4.7 Change evaluation subprocess . . 36

7.1 Different rendering approaches of
large datasets 55

7.2 Virtualization rendering techniques
on a large dataset 56

7.3 Single triple change visualization 57

7.4 Relationship visualization 58

7.5 Change Turtle output 58

7.6 Comment in a discussion thread 58

7.7 Unauthorized access message . . . 59

7.8 Rejection comment on a change 60

7.9 Updated change that was already
approved . 60

7.10 Approved vocabulary in a
publication . 60

7.11 Notifications 61

B.1 Home page for
non-administrators 81

B.2 Home page for administrators . . 82

B.3 Administrator panel options . . . 82

B.4 Administrator panel vocabularies
list . 82

B.5 Administrator panel pending
gestoring requests 83

B.6 Administrator panel pending
gestoring requests expanded 83

B.7 Removing gestors from a
vocabulary . 84

B.8 Publication overview 84

B.9 Review of changes 85

B.10 Limited review access 85

B.11 List of available vocabularies for
users . 86

B.12 Landing page 86

ix

Tables
4.1 Comparison of GitHub and

CheckIt as review platforms 37

6.1 Comparison of Create React App
and Vite . 51

8.1 Perceived difficulty of finishing the
test scenarios 66

8.2 SUS scores 66

x

Chapter 1

Introduction

The Open Data Directive1 mandates the release of public sector data (Open
Government Data) in free and open formats. Some of the benefits of publishing
Open Government Data are the possible improvements of efficiency in public
administrations, improved transparency of administrative organs, or economic
growth [1].

However, only publishing data in an open format may not be sufficient
enough to make the data useful. The quality of such data is not guaranteed,
and the interoperability with other datasets is also in jeopardy. To address
this problem, the European Union provided funding for a project titled
"Developing data policies to improve the quality and interoperability of public
administration data" [2].

The project consists of five main objectives, each working towards solving
a particular issue regarding open data [3]. This thesis will focus on the fifth
objective, "Increasing the interoperability of public administration information
systems and datasets recorded by them." One of the goals of this objective
is to develop a platform called Assembly line (AL) which provides a way
for creating and developing ontologies in a collaborative fashion. Despite the
platform’s general character - allowing it to be used to model any domain,
Czech public administration domain specialists mainly utilize it to model their
particular areas of interest. Therefore, the AL’s primary focus is to provide
domain and ontology engineers with a set of tools that would allow them to
capture the desired domain entities precisely. Their work (in AL tools) creates
the semantic government vocabulary (set of interlinked semantic vocabularies)
that describes and connects meanings of individual administration domain
entities to other domains or legislative concepts. Each public administration
can manage its own semantic vocabulary, describing its area of focus and its
important concepts, while AL ensures the semantic integrity of the semantic

1DIRECTIVE (EU) 2019/1024 OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL

1

1. Introduction
government vocabulary (SGoV) [4].

Each semantic vocabulary in the SGoV is made up of two parts: a glossary
of terms and an ontological model. Glossary is represented as a SKOS (Simple
Knowledge Organization System) [5] thesaurus of terms that describes their
annotation properties (e.g., definitions and labels) and places them in a
hierarchical structure. The ontological model further describes the formal
relations amongst terms using Web Ontology Language (OWL) [6]. Building
SGoV in this way allows for progressive harmonization of data’s meaning
(semantics) maintained in public administration information systems, which
helps to achieve better semantic data interoperability between them [7].

The AL offers tools that allow users to modify both parts of the semantic
vocabularies and subsequently publish those modifications. Users of AL
modify the semantic vocabularies by using three separate applications, Mis-
sion Control2 (vocabulary manager), TermIt3 (glossary manager) [8], and
OntoGrapher4 (ontological conceptual modeling tool) [9]. Once users have
completed all their desired vocabulary modifications, the altered vocabulary
data can be published to SGoV. However, a review of proposed changes must
be done before the modifications are incorporated into SGoV. The review
process is the only part of the vocabulary manipulation process that is not
handled by a tool developed by the AL’s authors.

The AL platform uses GitHub (GH) for storing SGoV in Terse RDF Triple
Language (Turtle) [10]. Each published set of changes is propagated as a pull
request to the SGoV GitHub repository5. Users overseeing the repository
must manually evaluate it and subsequently merge or reject the changes. The
evaluation is done by comparing the original .ttl files (Turtle file format) with
the modified versions using the GH text difference checker.

Approaching the evaluation of changes in this way is very problematic for
a number of reasons.

The modified files are generated by a server that loads vocabulary data
from a database and serializes them in an unstable manner into a file. That
can cause a random reordering of the file’s content, which would appear
as changes in the text difference checker. Because of this, it is particularly
challenging to distinguish between the actual modifications made by users
and the arbitrary reordering brought on by serialization.

Only GH repository maintainers can approve updates to SGoV, which is
the next problematic aspect. It is not maintainable long-term to rely only
on repository maintainers because the number of changes is expected only
to increase. Also, the project under which AL is developed has a specific

2https://github.com/datagov-cz/mission-control - Accessed: 14-Jan-2023
3https://github.com/datagov-cz/termit-ui - Accessed: 14-Jan-2023
4https://github.com/datagov-cz/ontoGrapher - Accessed: 14-Jan-2023
5https://github.com/datagov-cz/ssp - Accessed: 14-Jan-2023

2

https://github.com/datagov-cz/mission-control
https://github.com/datagov-cz/termit-ui
https://github.com/datagov-cz/ontoGrapher
https://github.com/datagov-cz/ssp

......................................1. Introduction

deadline, after which the project’s future is still being determined. That also
imposes an issue because the GH repository’s maintainers are the project’s
developers.

Therefore, the need for a solution that would allow more people to review
and accept changes is apparent. However, only adding more people as
maintainers of the GH repository does not solve the issue. They would need
to be familiar with the GH user interface and know the Turtle language’s
syntax.

The AL provides a user-friendly way of manipulating the semantic vocabu-
laries’ content until the last step, reviewing newly proposed changes. The
reviews can be complex and labor-intensive, requiring knowledge about the
modeled domain and certain technical expertise. The need for a system and
process which would allow more people to review changes in a user-friendly
manner is evident. Without the implementation of such a system, the AL’s
review step could be a severe obstacle in the broader adaptation of the AL
by the end-users.

This thesis describes the AL ecosystem and the design, development, and
testing of a new system that solves the data publication review step.

3

4

Chapter 2

Data model description

The Semantic Web is an extension of the existing World Wide Web, enabling
computers and people to work together by giving well-defined meaning to
data and information [11]. The meaning provided enables computers to
understand the data on the Web and analyze it in a similar way to humans.
The AL utilizes Semantic Web technologies to make the data published by
public agencies machine-readable, sharable, and reusable across applications.
This chapter introduces some key technologies that empower the Semantic
Web.

2.1 RDF

The Resource Description Framework (RDF) is a framework for describing
information about resources [12]. The resources are anything from physical
objects, people, and documents to even abstract concepts. The resources are
identified by their International Resource Identifier (IRI) [13]. The main goal
of RDF is to publish such data and interlink them on the Web.

To describe information about a resource, RDF uses statements that follow
a simple structure containing three elements in the following order: subject,
predicate, and object.

5

2. Data model description

Figure 2.1: Triple visualization using nodes connected by an arc

The subject and object are resources that are connected by a predicate.
The predicate explains the nature of that connection. In other words, it
explains the relationship between these two resources.

Since statements always have three elements, they are called triples. A
triple which would say that “Sky has a blue color” could informally look like
this:

sky has-color blue

A set of triples can be visualized as a connected graph, where subjects and
objects are nodes, while predicates are the arcs (figure: 2.1). The graphs
can be stored in various formats, for example: N-Triples1, Turtle2, TriG3,
N-Quads4, JSON-LD5. They differ in syntax but result in the same triples
for the same graphs. Later we discuss Turtle (section: 2.3), a format that is
used in the AL for storing RDF data.

2.2 Triples

As we already mentioned, the triples consist of three parts. Each of these
parts can be a different kind of element:

. Subject: IRI or blank node. Predicate: IRI.Object: IRI, blank node, or literal

In the following subsections we introduce IRIs, literals and blank nodes.
1https://www.w3.org/TR/n-triples/ - Accessed: 14-Jan-2023
2https://www.w3.org/TR/turtle/ - Accessed: 14-Jan-2023
3https://www.w3.org/TR/trig/ - Accessed: 14-Jan-2023
4https://www.w3.org/TR/n-quads/ - Accessed: 14-Jan-2023
5https://www.w3.org/TR/json-ld11/ - Accessed: 14-Jan-2023

6

https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/json-ld11/

....................................... 2.2. Triples

2.2.1 IRI

Resources are identified by their IRI, which is an abbreviation for International
Resource Identifier [14]. They are used as a global identifier that other people
can reuse. IRIs are a special form of a Uniform Resource Identifier (URI) [15].
The main difference from URI is the ability to write resource identifiers with
non-ASCII characters6, which is not allowed in URIs, where only US-ASCII7

characters are permitted. That is a limitation because resource identifiers
are not only used by computers but by humans as well. Humans tend
to use mnemonic names that might originate from their native language.
Therefore, using Unicode characters in the resource identifier is convenient
for international users. An example of a resource IRI from Public Sector
vocabulary representing Legal Subject in SGoV looks like this:

https://slovník.gov.cz/veřejný-sektor/pojem/subjekt-práva

2.2.2 Literal

Literals allow us to add values to statements, such as strings, numbers, or
dates. They are only allowed in the object part of the triple. The literal
consists of two or three elements [16].

. Lexical form. Datatype IRI.The language tag when using language string datatype8

We will present some simple examples to demonstrate how different types
of literals look like in Turtle (more about Turtle in: 2.3). Let us start with
typed literals. We separate the lexical form from the datatype by typing
^^between those two. So, the date might look like this:

1 "1970-01-01"^^<http://www.w3.org/2001/XMLSchema#date>

String values have many forms of how they can be represented. Many RDF
syntaxes support simple literals, which do not require the data type9 to be
stated for string values. This makes it possible to write string values as shown
in the following example.

6Unicode/ISO 10646
7List of permitted characters is available at: http://www.columbia.edu/kermit/ascii.

html - Accessed: 14-Jan-2023
8http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
9http://www.w3.org/2001/XMLSchema#string

7

http://www.columbia.edu/kermit/ascii.html
http://www.columbia.edu/kermit/ascii.html

2. Data model description
1 “Text-value”

Lastly, we mentioned the language tag for language strings. The syntax
of writing down a language string follows the same principle as typed literal,
with the difference of appending @ followed by the language tag after the
type.

1 “Building”^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#langString>@en

However, Turtle can shorten it similarly to plain string (simple literal),
omitting the data type and leaving just the lexical form and the language
tag.

1 “Building”@en

2.2.3 Blank node

Although literals and IRIs are good for making statements about resources,
it is sometimes convenient to talk about resources without using a global
identifier (IRI). We can define resources without giving them a global identifier,
and such resources still interlink to other resources. However, blank nodes
cannot be used everywhere and are limited only to subjects or objects of
triples [17]. We will show the possible use of blank nodes in the following
examples.

The first example of using blank nodes can be the following. In an e-
commerce system, users can place orders from various devices. We want to
store these devices as resources in the system, but we are not able to assign a
specific IRI to them. Therefore we will use blank nodes to represent them
instead.

Figure 2.2: Using blank node as a resource

As a second example, let us imagine a scenario where we keep basic informa-
tion about users of our imaginary system. We have several triples describing

8

..2.3. Turtle

a user’s age, name, and gender. We want to keep a user’s home address in
one triple (user lives-at address). Because address consists of multiple fields
like state, city, street name, and ZIP code, we need to encapsulate all this
information in one resource. We could create a unique resource with this
combination of fields and assign a global identifier to it. However, that would
result in a huge number of new globally identifiable resources which may not
be needed. So we use blank nodes to encapsulate all the fields in the address
without overblowing the system with irrelevant IRIs.

2.3 Turtle

Terse RDF Triple Language (Turtle) is a concrete syntax for RDF [10]. It
is an extension of N-Triples [18] syntax which provides a line-based way
of writing down graphs. However, Turtle allows for a much more compact
textual view of the data.

To fully showcase the advantages of using Turtle, let us start with a small
graph written in N-Triples that describes a book and its author. The N-Triples
is a line-based format that uses only absolute IRIs enclosed in angle brackets.
The triple’s subject, predicate, and object are separated by whitespace, and
a dot symbol marks the triple’s end.

1 <http://example.org/book/book1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2000/01/rdf-schema#Resource> .

↪→

↪→

2 <http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/title> "The Great Gatsby"
.

↪→

↪→

3 <http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/title/creator>
<http://example.org/author/author1> .

↪→

↪→

4 <http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/type>
<http://example.org/genre/novel> .

↪→

↪→

5 <http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/type>
<http://example.org/genre/tragedy> .

↪→

↪→

6

7 <http://example.org/author/author1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .

↪→

↪→

8 <http://example.org/author/author1>
<http://xmlns.com/foaf/0.1/name> "F. Scott Fitzgerald" .↪→

9

2. Data model description
The book shown in the example is defined as a resource, with the title "The

Great Gatsby." We also linked the book with the novel and tragedy genre
and its author. The author is defined as a person with the name "F. Scott
Fitzgerald."

The main advantage of Turtle is a more compact and readable way of
writing down graphs. There are three main approaches how to achieve a
shorter textual representation of RDF data...1. Predicate lists..2. Object lists..3. Prefixes

It is pretty common that we define multiple triples concerning the same
subject. Predicate lists solve this issue by appending multiple predicates and
objects separated by semicolons after the object.

1 <http://example.org/author/author1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> ;

↪→

↪→

2 <http://xmlns.com/foaf/0.1/name> "F. Scott Fitzgerald" .

It is also common to define multiple objects per one subject-predicate pair.
Object lists allow objects to be written in sequence, separated by a comma.

1 <http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/type>
<http://example.org/genre/novel> ,
<http://example.org/genre/tragedy> .

↪→

↪→

↪→

Another way of making the triples more readable is to use prefixes. Prefixes
are used to shorten long IRIs by defining prefix labels for the beginning part
of an IRI. Let us consider IRI http://example.org/genre/novel from the
previous example. If we define a prefix label for http://example.org/genre/
as gen, we can refer to the IRI by gen:novel. When using prefixes, enclosing
brackets are not used.

1 @prefix gen: <http://example.org/genre/> .
2 @prefix dc: <http://purl.org/dc/elements/1.1/> .
3 @prefix bk: <http://example.org/book/> .
4

5 bk:book1 dc:type gen:tragedy .

10

.................................. 2.4. RDF Vocabularies

The initial example can, in its shortest form, look like the following Turtle ex-
ample. Please note the fact that we are using ’a’ for <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type>. It is a rule in Turtle that bounds the ’a’ to that
IRI [14].

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix dc: <http://purl.org/dc/elements/1.1/> .
4 @prefix bk: <http://example.org/book/> .
5 @prefix gen: <http://example.org/genre/> .
6 @prefix au: <http://example.org/author/> .
7 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
8

9

10 bk:book1 a rdf:Resource ;
11 dc:title "The Great Gatsby" ;
12 dc:creator au:author1 ;
13 dc:type gen:novel , gen:tragedy .
14

15 au:author1 a foaf:Person ;
16 foaf:name "F. Scott Fitzgerald" .

2.4 RDF Vocabularies

As mentioned in the previous section, the RDF data model allows us to make
statements about resources. The model is very flexible and does not prescribe
any specific meaning for resources. However, the meaning can be provided
by particular vocabularies or conventions that provide semantic information
about the resources [14].

Vocabularies describe certain areas of interest, classifying terms used in
that specific domain, possibly explaining a relationship between them, and
defining possible constraints on the usage of those terms [19].

To support the creation of such vocabularies, RDF provides RDF Schema
language (RDFS), which allows the definition of the semantic characteristics
of the data [20]. RDFS is not the only vocabulary that can provide semantic
meaning to the data. In fact, many vocabularies have become widely used
to help describe the data. Some of the relevant vocabularies for the AL are
RDFS, SKOS10, OWL11, and DCMI12. In the following sections, we inspect

10https://www.w3.org/TR/skos-reference/ Accessed: 20-Jan-2023
11https://www.w3.org/TR/owl-features/ Accessed: 20-Jan-2023
12https://www.dublincore.org/specifications/dublin-core/dcmi-terms/ Accessed:

20-Jan-2023

11

https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/owl-features/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

2. Data model description
some of them and provide examples based on the actual SGoV data, which is
why they contain the Czech language.

2.4.1 SKOS

SKOS, which stands for Simple Knowledge Organization System, is an RDF
vocabulary developed by the World Wide Web Consortium13 (W3C) for the
representation of KOS (Knowledge Organization System) [21]. It provides
a way how to create and manage KOS in a standardized manner by using
concepts (identified by IRI) and creating relationships amongst them. To
better illustrate the meaning behind SKOS, we will be showing individual
examples of SKOS usage on the data originating from SGoV using Turtle
notation.

SKOS is built around elements called concepts. These concepts can repre-
sent units of thought, ideas, meanings, or objects and events which exist in
the knowledge organization system [5]. Concepts are characterized by their
labels, which reference them in natural language. SKOS offers three types of
labels: skos:prefLabel, skos:altLabel and skos:hiddenLabel. First mentioned is
used to provide the preferred label for the concept, while skos:altLabel is used
to provide alternative labels. For searching purposes, the skos:hiddenLabel is
used. The hidden labels are usually invisible to users and are only used to
help them interact with a KOS via text search functions.

1 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
2 @prefix sgov:

<https://slovník.gov.cz/legislativní/sbírka/361/2000/pojem/>↪→

3

4 sgov:stavba skos:prefLabel “Budova”@cs .
5 sgov:stavba skos:altLabel “Stavení”@cs .
6 sgov:stavba skos:hiddenLabel “Bduova”@cs .

Concepts get their meaning not only from labels and definitions (skos:definition)
but also from their relationships to other concepts. SKOS provides two types
of semantic relations: hierarchical and associative.

Hierarchical relations indicate whether a concept is in some way more
general than other (skos:broader). Similarly, the inverse can be expressed by
skos:narrower, indicating that the concept’s meaning is more specific than
the other [22].

13https://www.w3.org/ Accessed: 9-April-2023

12

https://www.w3.org/

.................................. 2.4. RDF Vocabularies

1 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
2 @prefix sgov:

<https://slovník.gov.cz/legislativní/sbírka/361/2000/pojem/>
.

↪→

↪→

3 sgov:motorové-vozidlo skos:broader sgov:vozidlo .

Associative relations indicate that linked concepts are inherently somehow
related, but not in a way that would indicate that one concept is more or less
general. We can mention skos:related as an example.

Even though concepts can be created and used as stand-alone entities, they
are usually grouped together in carefully compiled vocabularies (e.g., thesauri
or classification schemes). These vocabularies can be created by creating
resources of the skos:ConceptScheme class. Concepts are then linked to the
concept scheme resource via skos:inScheme.

Following example shows concepts which describe various traffic entities.
All of them are grouped in one glossary called Slovník zákona č. 361/2000
Sb. o provozu na pozemních komunikacích a o změnách některých zákonů -
glosář

1 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
2 @prefix sgov:

<https://slovník.gov.cz/legislativní/sbírka/361/2000/pojem/>
.

↪→

↪→

3 sgov:motorové-vozidlo skos:inScheme
<https://slovník.gov.cz/legislativní/sbírka/361/2000/glosář>
.

↪→

↪→

4 sgov:autobus skos:inScheme
<https://slovník.gov.cz/legislativní/sbírka/361/2000/glosář>
.

↪→

↪→

5 sgov:cyklista skos:inScheme
<https://slovník.gov.cz/legislativní/sbírka/361/2000/glosář>
.

↪→

↪→

2.4.2 DCMI

The Dublin Core Metadata Initiative (DCMI) is an organization that supports
the development and advancement of metadata design and best practices
within the metadata space [23].

DCMI created a set of 15 core elements used for resource description14.
These fifteen elements consequently became part of a larger set15 of metadata

14The Dublin Core™ Metadata Element Set
15DCMI metadata terms

13

2. Data model description
vocabularies and technical specifications also maintained by DCMI [24]. Let
us list the core fifteen elements. Note that the elements are written with dc:
prefix which stands for http://purl.org/dc/terms/.

. dc:title. dc:creator. dc:subject. dc:description. dc:publisher. dc:contributor. dc:date. dc:type. dc:format. dc:identifier. dc:source. dc:language. dc:relation. dc:coverage. dc:rights

These elements can be used to describe concept scheme resource. Let us
describe the glossary mentioned in the SKOS section (2.4.1) with some of the
core elements.

1 @prefix dcterms: <http://purl.org/dc/terms/> .
2 @prefix l-sgov-sbírka-361-2000:

<https://slovník.gov.cz/legislativní/sbírka/361/2000/> .↪→

3

4 l-sgov-sbírka-361-2000:glosář a skos:ConceptScheme;
5 dcterms:created "2020-07-28";
6 dcterms:title "Slovník zákona č. 361/2000 Sb. o provozu na

pozemních komunikacích a o změnách některých zákonů -
glosář"@cs;

↪→

↪→

14

.................................. 2.4. RDF Vocabularies

2.4.3 OWL

OWL, which stands for Web Ontology Language, is a language developed by
W3C for the Semantic Web. It is designed to represent complex knowledge
about things, groups of things, and their relationships richly and compre-
hensively. OWL uses statements to capture elementary pieces of knowledge.
A statement such as “every man is mortal” can be used as an example.
A collection of such base pieces of knowledge (axioms) essentially form an
ontology that asserts that these axioms are true [6].

To better illustrate how OWL can express knowledge, we will use simple
statement examples based upon two people named “John” and “Alice.” State-
ments typically refer to objects and their description. For example, they
can be created by placing objects in categories (“John is a man”) or stating
something about their relationships (“John and Alice are married”). All the
atomic parts of the statements: objects (“John, ”Alice”), category (“man”),
and relations (“married”) are called entities. In the current version of OWL,
the objects are denoted as individuals, categories as classes, and relations
as properties.

In the following example, we create OWL classes representing men and
women. We further define them as subClasses of class Person (every man or
woman is also a person). Then we create our individuals, John and Alice,
each assigning their gender. Then we define the object property hasWife. We
declare that if A hasWife B, A must be a man (rdfs:domain) and B must
be a woman (rdfs:range). Also, we add the fact that property hasWife can
also be expressed as an inverse of property hasHuband. Then we make Alice
John’s wife. Also, we expect John and Alice to have kids in the future, so
we create class Parent, defined as anyone connected to class Person via
hasChild property.

15

2. Data model description
1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix ex: <http://example.com/> .
4

5 ex:Person a owl:Class .
6 ex:Man a owl:Class ;
7 rdfs:subClassOf ex:Person .
8 ex:Woman a owl:Class ;
9 rdfs:subClassOf ex:Person .

10

11 ex:John a ex:Man .
12 ex:Alice a ex:Woman .
13

14 ex:hasWife a owl:ObjectProperty ;
15 rdfs:domain ex:Man ;
16 rdfs:range ex:Woman ;
17 owl:inverseOf ex:hasHusband .
18

19 ex:John ex:hasWife ex:Alice .
20

21 ex:Parent owl:equivalentClass [
22 a owl:Restriction ;
23 owl:onProperty ex:hasChild ;
24 owl:someValuesFrom ex:Person
25] .

The example presented is rather simple and generic. Its sole objective is
to showcase some of the OWL’s capabilities. While departing from the data
from SGoV-based examples, illustrating OWL in "real-life" situations may
help to explain its possibilities better.

16

Chapter 3

Assembly line

This chapter details the key concepts used in AL, describes the tools offered
to end users, and mentions the other technologies present in AL that make
the tools work.

3.1 Overview and basic concepts

The AL was created to provide a set of tools that allow the collaborative
creation of semantic vocabularies. These vocabularies are used to gradually
harmonize the meaning of the data stored in the information systems of the
Czech public administration. Together they form the SGoV, which can be
perceived as a dictionary of terms used in the public sector, including their
definitions, their connection to the legislation, and their semantic relations
to each other. Creating SGoV allows the meaning of terms used by public
administrations to be shared but also brings other benefits, which we list
below.

. Harmonization of the meaning amongst data in the public agency infor-
mation systems.

. Enhanced interoperability of the data in the public agency information
systems.

. Improved discoverability of the open datasets

. Increased quality of descriptive metadata of the open datasets.

17

3. Assembly line.....................................
3.1.1 Term

A term is the basic building block for all the vocabularies in SGoV. It
represents an entity or a concept present in the domain that is captured by
the vocabulary. The meaning of a term is defined by its label, definition,
synonyms, and relationships to other terms, to name a few. Let us consider the
concept of a building as an example. According to the Energy Management Act
of the Czech Republic, a building is defined as a heating-equipped structure
that is both above and below ground. The Land Registry Act defines a
building as a construction above ground with solid foundations. We can see
that each domain understands the concept of building differently. We can
solve this issue by creating different semantic vocabularies (for each domain)
and placing precisely defined terms into them. That allows the terms to
coexist in the SGoV and preserve their distinct meaning.

3.1.2 Vocabulary structure

Each semantic vocabulary inside of SGoV is split into two parts - glossary
and conceptual model.

Glossary is a list of terms present in the vocabulary, with their label,
definition, and hierarchical relations to other terms. The glossaries are made
by domain experts who utilize the SKOS organizational scheme to express
this knowledge about terms.

The conceptual model expands the vocabulary further by adding semantic
relations between terms defined in the glossaries. The relationships and the
definition of their constraints and specifics allow ontology engineers to capture
the semantics of the domain more precisely. AL internally uses OWL to
represent the expressive conceptual model.

3.2 Tools

The tools that AL users have at their disposal are examined in more detail in
the following sections.

3.2.1 Mission Control

Mission control is considered to be an entry point into the whole AL. It is a
tool that allows users to manage their vocabulary modifications. Users create
projects to which they import vocabularies they would like to modify. Projects

18

.. 3.2. Tools

are not limited only to already existing vocabularies. New vocabularies can
be created and imported into the projects as well. Projects allow for the
collaboration of multiple users on the same series of changes. Separating the
work into projects also ensures that changes of one user do not interfere with
changes of another user (in case they do not work on the same project). The
separation is achieved by creating a new copy of the vocabulary inside the
project.

Figure 3.1: Visualization of project separation inside the graph database

The project’s contributors can publish the project to the SGoV once they
have made all the desired modifications. A pull request containing all the
changes from the project is created in the GH SGoV repository, where the
repository maintainers review the changes.

3.2.2 TermIt

TermIt is a glossary editor with an intuitive user interface that lets users add
new SKOS concepts (terms) and modify or remove already-existing ones. In
TermIt, users can modify the terms’ labels, definitions, sources of definitions,
synonyms, search strings, notations, scope notes, and text examples.

TermIt allows users to express both hierarchical and associative SKOS
relationships between terms. The hierarchical structure of SKOS is the result
of defining the parent terms (skos:broader) of terms.

The associative relationships are used in the following ways. Suppose a
term has the exact same meaning as a term from a different vocabulary. In
that case, it is possible to record this relation between them (skos:exactMatch)
by connecting them via the exact match property. However, this property
should be used cautiously due to the transitive nature of the property. If

19

3. Assembly line.....................................
term A is the exact match of term B and term B is the exact match of term
C, then term A is the exact match of term C. If terms do not share their
exact meaning but are somehow related, they can be connected by utilizing
the related property (skos:related) of terms.

Finally, TermIt also allows vocabulary modifications, such as changing the
label (dc:title) or definition of a vocabulary (dc:description).

3.2.3 OntoGrapher

OG is a conceptual modeling tool that allows users to modify the ontological
model part of a vocabulary. The fundamental benefit of OG is its capacity to
accept and generate machine-readable outputs in the form of SKOS thesauri
and OWL ontologies without the need for the users to understand any of
these standards. Users create diagrams in which they visually model the
semantic relationships between terms defined in the glossary. OG allows users
to model the cardinalities of a relationship, its labels, and synonyms. Also, the
modification of the term’s intrinsic tropes, stereotypes, labels, and synonyms
is possible. Regarding stereotypes, users can define up to two stereotypes,
although at least one is needed for proper model validation (depending on the
stereotype). First are type stereotypes that define the ontological nature of a
term. We can mention Object Type and Event Type as examples. Second
are the OntoUML stereotypes [25] used for validation of the model. We
can mention Kind, Role, Phase, and Category as examples. Users, if they
desire, can also see a list of all relationships in which the term is involved.
All of these features allow for the creation of complex models that are also
automatically validated for their consistency during modeling.

3.3 Technical overview

Now that the outline of how each primary AL tool works has been established,
let us take a closer look at the rest of the AL architecture.

3.3.1 Front-end applications

All the AL tools with which users interact (TermIt, OG, MC) are web
applications built with React1. They serve the roles of clients in a client-
server architecture. The client-server architecture is a computing model in
which a server provides clients with resources and services. The architecture
follows a request-response messaging pattern where a client sends a request,

1https://react.dev/ Accessed: 19-April-2023

20

https://react.dev/

.................................. 3.3. Technical overview

to which the server returns a response [26]. The servers that are present in
the AL are described in the next section.

3.3.2 Servers

The AL contains several servers that perform different tasks required for the
AL to function.

. SGoV server2. Provides a common Application Programming Interface (API) for
creating new vocabularies, managing projects, publishing changes,
and mirroring the data between GitHub and the deployed databases..TermIt server3. Provides API for all actions that are TermIt related (e.g., creation
and modification of terms and modifications of vocabularies).. SGoV validator4. Checks the consistency and compliance of glossaries and models
according to a predefined set of rules..Authentication server.More in section 3.3.3.

3.3.3 Security

Since AL consists of several tools used by numerous users, centralized user
administration and authentication solution is employed. The AL utilizes
Keycloak5 as an administration, authentication, and authorization solution.
The AL tools communicate with the authentication server using the OpenID
Connect protocol6 (OIDC) that allows third-party applications to verify
the identity of the end user and to obtain basic user profile information.
Keycloak offers a Single-Sign-On (SSO) service that allows users to use the
same credentials across multiple applications. Since AL consists of many
tools, the use of such an authentication mechanism is practical for the AL
users. Once users log into one AL tool, they are not required to re-login to
access a different one.

2https://github.com/datagov-cz/sgov Accessed: 2-May-2023
3https://github.com/datagov-cz/termit Accessed: 2-May-2023
4https://github.com/datagov-cz/sgov-validator Accessed: 2-May-2023
5https://www.keycloak.org/ Accessed: 2-May-2023
6https://openid.net/connect/ Accessed: 2-May-2023

21

https://github.com/datagov-cz/sgov
https://github.com/datagov-cz/termit
https://github.com/datagov-cz/sgov-validator
https://www.keycloak.org/
https://openid.net/connect/

3. Assembly line.....................................
3.3.4 Database

The AL uses GraphDB7 and Virtuoso8 as RDF triplestores, each having its
own deployed instance in the AL. The Virtuoso instance is a public database
that stores the approved version of SGoV. The GraphDB instance is a copy
of the public database where users make changes.

7https://graphdb.ontotext.com/documentation/10.2/ Accessed: 2-May-2023
8https://virtuoso.openlinksw.com/ Accessed: 2-May-2023

22

https://graphdb.ontotext.com/documentation/10.2/
https://virtuoso.openlinksw.com/

Chapter 4

Process analysis

In this chapter, we focus on the current state of the AL from a user perspective,
the already defined processes, and the resulting shortcomings of the current
implementation. We define a new set of processes on top of which a new
system called CheckIt was developed. A system that allows reviewing and
processing the latest increments to SGoV.

4.1 Review process

The review process is essential to the vocabulary (ontology) manipulation
workflow. It ensures that changes applied to vocabularies are adequate and
correct. The changes must align with the modified vocabulary’s overall
structure and conventions. Without such revision, logical inconsistencies
might be introduced into the ontology, impacting the ontology’s usability
and comprehensibility. Therefore, any changes that violate the vocabulary’s
structure or standards must be identified and fixed.

A platform that supports such a review process must meet specific criteria
in order to ensure the process’s efficacy and accuracy. We identified a couple
of key requirements for the platform, which are listed below, alongside a brief
rationale for each requirement.

. User-friendly data visualization.Ontologies can get fairly complex, making it challenging for users
unfamiliar with the Semantic Web technologies to understand the
meaning of data. User-friendly data visualization that simplifies
the underlying ontology structure is crucial for easier identification
of changes.

23

4. Process analysis
. Communication.The platform should provide a tool allowing reviewers to communi-

cate their feedback regarding the changes clearly and effectively, so
the author of changes can make necessary modifications..When a reviewer is unsure about the meaning of a change, the
platform should provide them with a means to communicate with
the change’s author to clarify any ambiguities.. Collaboration.The platform should allow multiple reviewers to collaborate on the
review process. Allowing multiple reviewers to participate in a
review increases the efficiency of the whole process.. Defined user access.Only qualified users should have access to a specific portion of
changes in a review process. Defining a set of users who can access
specific parts of the review is essential for ensuring that reviewers
have the expertise and knowledge needed to identify issues in the
proposed changes. Those reviewers are eligible to make informed
decisions regarding the approval of changes and can provide valuable
feedback to the creators of changes.

In the following section, we inspect how GH, the currently used platform
for the review process in the AL, fulfills the mentioned requirements.

4.1.1 Current platform - GitHub

The AL uses the GH platform for two reasons: persisting the SGoV and
reviewing the modifications to SGoV. The review process that is present in
the current version of AL was defined around the capabilities of the platform
rather than the actual review process needs.

The current review process works in the following manner. After users
publish their modified vocabularies, a pull request in GH is created. Then it
is up to the repository maintainers to check each changed line of the resulting
.ttl file and decide whether such changes make sense to the domain. If they
do, the pull request (PR) is approved, and changes become incorporated into
SGoV. If not, the pull request is rejected, and the reviewer may send an email
to the author of the changes explaining why.

We can already see that the current review process is not optimal. However,
let us take a closer look at the GH platform to see why using it in the AL
review process is suboptimal.

24

....................................4.1. Review process

Figure 4.1: Vocabulary manipulation workflow - current state

The first issue comes from the different means of authentication used by
GH and AL. GH uses its own authentication mechanism that is not in any
way connected to the one of AL. So if AL users want to communicate with
the reviewers directly on the pull requests, they need to have a GH account.

Despite the need for multiple accounts management, there is still the
problem of understanding the meaning and syntax of published data. Users of
AL do not directly modify the triples; instead, they are provided with a user
interface that does not require them to know Turtle or any of the used RDF
vocabularies (e.g., SKOS) to manipulate the RDF data. Consider changing
the term definition as an example. Users only change the field term definition

25

4. Process analysis
(in TermIt), possibly not knowing that the resulting triple in Turtle might
look like the following example.

1 <IRI> skos:definition “term definition”@en .

However, the situation worsens when the changed data comes from OG.
The amount of changed triples quickly gets into tens. The triples may contain
blank nodes and may be scattered all over the final .ttl file due to multiple
IRIs being present in the relationships.

Another problematic aspect regarding the .ttl file is the possible random
reorganization of its content. Whenever a new pull request is created, the
SGoV server loads the changed vocabulary from the database and serializes
it into a file. However, this serialization is unstable, making it possible for
random reordering of the file to happen. The GH interface would show such
reordering as deletion of some triples in one section of the file and their
creation in another. For a reviewer, it means remembering which triples were
just reorganized and which were actually modified/created.

Showing pure triples (Turtle syntax) creates a disparity between what users
of AL are used to seeing and what is presented in GH. TermIt encapsulates
hierarchy and properties under a singular link or text value. OG shows the
relationships visually, making it easy to understand for users familiar with
UML. The anticipated end-users of OG are ontology engineers from whom
an understanding of UML is expected.

The collaborative aspect among reviewers is limited due to the fact that the
PR review is bound to only one GH account. Meaning one reviewer cannot
approve one part of the pull request while others would approve the rest.

Lastly, there is no way how to divide access further granularly over the GH
repository. Meaning GH does not allow granting write access to only some
subset of files in the repository. That is problematic since anyone with write
access can change the entire content of SGoV. Therefore, the write access
should be given only to the administrators of the entire AL.

26

....................................4.1. Review process

To summarize, following shortcoming of the AL review process were identi-
fied.

. Communication with the reviewer (need of an GH account).. Required knowledge of the semantic web (e.g., meaning of SKOS, Turtle
structure).. Data visualisation disparity.. Unclear distinctions between real changes and changes caused by random
reordering.. Inability to grant write access only to some vocabularies in SGoV.. Review is bound to only one approving user (limited possibility of
collaboration on a review).

4.1.2 New platform - CheckIt

The identified issues of the current implementation should be resolved by
creating a new tool called CheckIt which would replace the current GH user
interface used for the review process. Therefore, GH would become irrelevant
to the end users of the AL. It still would be present in the AL technical
workflow (for persisting the SGoV), but users would not have to interact with
it in order to make changes to the SGoV repository.

The new solution should provide users with an intuitive interface in which
they can compare and assess modifications applied to SGoV. The changes
should be displayed in an AL-like manner, replacing the underlying triple
data representation with a property-value format or with a visual graph
representation (nodes connected by arcs).

Displaying the changes in an AL-like manner allows more people to un-
derstand the meaning of changes and improves the communication efficiency
between reviewers and creators of changes.

The new platform should display only the actual changes made by AL
users, not the ones caused by the unstable serialization. By showing only the
real changes, reviewers can evaluate publications more effectively.

Making the platform part of the AL also enables all users of the AL to
be involved in the review process. They can access the platform under the
same credentials they use for any other tool present in the AL. That means
that any AL user can be given the right to review changes to any SGoV
vocabulary. That makes the review a collaborative activity, not bound to
only one reviewer per publication, further improving the process efficacy.

27

4. Process analysis

Figure 4.2: Vocabulary manipulation workflow - new state

4.1.3 Conclusion

It is evident that the currently deployed solution using GH as a tool for
comparing the vocabulary changes has many flaws. Defining a new review
process in the AL and integrating a new tool built around that process into

28

................................... 4.2. Process entities

the AL would not only expand the AL’s capabilities but could increase the
overall approachability of the platform by end-users.

4.2 Process entities

In order to better illustrate the new review process, it is necessary to define
the three entities that are essential to it (figure: 4.3).

4.2.1 Change

Change is the basic building block of the new review process. It usually
represents a single changed, created, or deleted triple. For example, changing
a term’s label or definition is considered a change that must be reviewed. The
changes usually originate from statements that users create while interacting
with the AL tools. Most of the AL tools’ operations result in a single statement
being created or modified. However, that is not true for OntoGrapher, where
users can create custom relationships between terms. These relationships
are usually expressed by multiple statements. We encapsulate all of those
statements into a single change. For example, the relationship "person drives
a car" is considered a singular change in the new review process, despite
being made from multiple triples. The increased number of triples is caused
by the expressiveness of OWL, which allows specifying the cardinalities of
the relationships and other related attributes.

4.2.2 Vocabulary changes

Changes that affect the same vocabulary are grouped together to form a
logical unit. In the new review process, we want the vocabularies to have
a determined set of users who can review the changes applied to them.
Therefore having changes grouped by the vocabulary they affect allows for a
more straightforward distinction of whether a user is eligible to review such
changes or not.

4.2.3 Publication

When users publish their changes, a publication is created, which starts
off the new review process. Publications consist of one or more vocabulary
changes, each containing changes to their respective vocabulary. That makes a
publication a wrapper entity for all the other mentioned entities. Publications

29

4. Process analysis
are considered indivisible, meaning it is impossible to persist only certain parts
of a publication. Therefore only the entire publication might be accepted and
persisted into SGoV or nothing.

To account for the collaborative aspect of the review process, we define a
publication as an entity that can change over time. For example, if a reviewer
demands some modifications to the vocabulary changes, users can update
those changes without causing the reviewers to lose their overall progress on
the review.

Figure 4.3: Publication containing modifications to two vocabularies

4.3 Process participants

To overcome the current implementation’s shortcomings and support newly
created processes, we need to define three additional hierarchical roles for
the AL. The hierarchy ensures that roles at higher levels are given all the
privileges of roles at lower levels.

4.3.1 User

By default, all users of the CheckIt tool have the user role. This role grants
them read access and comment access to all published changes.

4.3.2 Vocabulary gestor

We define the gestor’s role as an overseeing authority over a particular
vocabulary. Every gestor of a specific vocabulary is responsible for the
changes applied to it and therefore decides which changes or new data will
be incorporated into the persisted vocabulary.

30

................................. 4.3. Process participants

Any user can become a gestor of one or multiple vocabularies. It is the
administrator’s job to decide whether a user is eligible to become a gestor of
a vocabulary or not.

4.3.3 Administrator

Administrators are the users with the highest possible privileges in the new
system. They possess the gestor rights to all vocabularies in SGoV.

Their main objective is to manage who has the gestor rights to which
vocabularies. Meaning they can assign or remove the vocabulary-gestor role
to or from any user. Administrators can also elevate other users to the
administrator level to make the system more independent, eliminating the
possible lack of administrators in case of work indisposition or vacation. It is
expected that the current set of SGoV repository maintainers will be assigned
the role of administrators of the new system.

The hierarchy of the users, along with their allowed actions, is shown in
the following diagram (figure: 4.4).

Figure 4.4: User hierarchy of the new system

31

4. Process analysis
4.4 Processes

This section presents the new processes needed for the new AL review workflow.
The new processes are tightly bound to the roles we introduced in the previous
section.

4.4.1 Requesting a gestor role

Anyone who wants to become a gestor of a particular vocabulary can do
so by creating a gestoring request, which is then evaluated by any of the
administrators of CheckIt. Any vocabulary that already exists in SGoV can
have gestoring requests made for it.

Administrators should decide whether a particular user is eligible to become
a gestor of requested vocabulary by knowing the requested vocabulary and
the user. Such knowledge is expected from an administrator of the system.

New vocabularies (not persisted in SGoV yet) are gestored only by the
administrators, and none can request to become their gestor until they are
persisted in SGoV. The rationale for this restriction is that administrators
are in charge of the entire SGoV content and should know which vocabularies
are in the system.

The next figure (4.5) depicts the requesting gestor role process in a diagram.

4.4.2 Publication review

The review process starts with the creation of a publication. Publications are
created when authors of changes decide that their changes are complete and
ready for assessment from gestors.

Based on the publication’s content, relevant gestors are notified about a
new publication that requires their expertise needed for a proper evaluation
of the changes.

Publications contain vocabulary changes that can be reviewed only by users
who have the gestor right over a vocabulary that the changes affect. Users
that do not have gestor control over the modified vocabulary can only see the
changes to that vocabulary with the option to provide some insight regarding
the meaning of the change (clarification to the gestor) in an attached comment
thread.

The review of each change can have two possible outcomes. First is the

32

...................................... 4.4. Processes

approval of the change. Change should be approved if it does not cause logical
inconsistencies in the vocabulary and complies with its structure.

If the meaning of the change is unclear to a gestor or some modifications
are needed for the change to be approvable, discussion over the change needs
to happen. Gestors should ask questions when something is unclear to them,
and anyone (preferably the change’s author) should respond.

The discussion should result in a state where the gestor has enough infor-
mation to decide whether the change can be approved. If the change in its
current state cannot be approved, the gestor must explain to the change’s
author what needs to be modified in order for the change to be accepted.
The author can respond with follow-up questions if necessary. The gestor
rejects the change in its current (non-approvable) state and writes a rejection
comment summarising the requested modifications.

When a single gestor approves all changes that affect a particular vocabulary
(vocabulary changes), then the vocabulary in the publication is considered to
have an approving review. If a publication contains at least one approving
review per each affected vocabulary, the changes in the publication can be
integrated into SGoV.

Any gestor of an involved vocabulary in the publication can confirm the
merge of the publication into the SGoV repository (approve publication),
which ends the review process.

However, having an approving review associated with each vocabulary
present in the publication does not guarantee the merge into the SGoV
repository. Gestors might require some additional changes to be added to the
publication. In that case, they reject the publication and provide a rejection
message which contains a summary of what changes need to be added.

If gestors do not require any additional changes to be added, they approve
the publication, and the changes get persisted into the SGoV. Hence the
changes are applied to their respective vocabularies and become a part of the
publicly available SGoV repository.

To better showcase the new review process, we present two diagrams. First
(4.6) is the overview of the whole process. It demonstrates the collaboration
between the gestor and the author of the publication. The second diagram
(4.7) is a close-up showing the individual change review process.

33

4. Process analysis

Figure 4.5: Requesting a gestor role

34

...................................... 4.4. Processes

Figure 4.6: New review process overview

35

4. Process analysis

Figure 4.7: Change evaluation subprocess

36

...................................... 4.5. Summary

4.5 Summary

In this chapter, we defined a set of requirements that should be met by a
platform used for the AL review process. We examined how these needs are
fulfilled in the present implementation and offered a new solution that would
address the shortcomings of the current one. The comparison of the two
platforms is shown in the table below.

Current platform (GH) New platform (CheckIt)
In Assembly line No Yes
Authentication GitHub Assembly line

Triple visualisation Turtle notation
Property-value format,
graphs for relationships,
Turtle notation

Review granularity Per pull request Per changed triple
or set of triples (relationships)

Write authority Over whole SGoV Per vocabulary

Discussion over changes Per lines of changed .ttl file Per changed triple
or set of triples (relationships)

UI language English Czech, English

Table 4.1: Comparison of GitHub and CheckIt as review platforms

It is evident that the new platform offers a much more accessible and
efficient review process than the current solution. By creating CheckIt and
using the newly defined review process, the SGoV could be modified and
expanded more accurately and quickly.

37

38

Chapter 5

Design of the system

This chapter focuses on the design of the new system. We define the functional
and nonfunctional requirements of the system.

5.1 Functional requirements

The functional requirements define what the system must accomplish or must
be able to do [27]. The requirements are derived from a thorough analysis
of the needs and preferences of the application’s users and stakeholders.
The definition of a functional requirement must be precise, granular, and
concise, not allowing any misinterpretation of the requirement to happen.
The requirements must not contradict each other, and their fulfillment in the
final product is verifiable [28]. By clearly defining the functional requirements,
we establish the scope of the system and set the criteria for its successful
implementation.

The complete list of identified functional requirements for the new system
is provided below.

. FR: 1. The system must allow all users to log in under their AL creden-
tials.. FR: 2. The system must allow all users to log out.. FR: 3. The system must allow all users to change the language of the
UI.. FR: 4. The system must allow all users to see all of their notifications.. FR: 5. The system must redirect all users to the relevant part of the
application after interacting with a notification.

39

5. Design of the system
. FR: 6. The system must show all users their number of unread notifica-

tions.. FR: 7. The system must allow all users to mark all their notifications as
read.. FR: 8. The system must allow administrators to see all unresolved
gestoring requests.. FR: 9. The system must allow administrators to approve gestoring
requests.. FR: 10. The system must allow administrators to reject gestoring re-
quests.. FR: 11. The system must allow administrators to filter out the vocabu-
laries with at least one gestor assigned.. FR: 12. The system must allow administrators to see how many vocabu-
laries have assigned at least one gestor.. FR: 13. The system must allow administrators to assign any user as a
gestor to any vocabulary.. FR: 14. The system must allow administrators to remove any gestor
from any vocabulary.. FR: 15. The system must allow administrators to filter the list of users
by their first name and last name.. FR: 16. The system must allow administrators to add any user as an
administrator.. FR: 17. The system must allow administrators to remove any adminis-
trator from the system that is not them.. FR: 18. The system must allow all users to see all vocabularies persisted
in SGoV.. FR: 19. The system must allow filtering a list of vocabularies by their
label.. FR: 20. The system must allow all users to see what vocabularies they
are gestoring.. FR: 21. The system must allow all users to create a gestoring request to
any vocabulary they do not already gestor.. FR: 22. The system must allow all users to see all their pending gestoring
requests.. FR: 23. The system must allow all users to see a list of unresolved
publications.

40

................................5.1. Functional requirements

. FR: 24. The system must allow all users to see a list of resolved publica-
tions.. FR: 25. The system must allow all users to see the state of a publication
alongside its closing comment (if present).. FR: 26. The system must allow all users to see what vocabularies are in
the publication.. FR: 27. The system must allow users to see who are the gestors of a
vocabulary.. FR: 28. The system must allow all users to see which users have approved
a vocabulary in a publication.. FR: 29. The system must allow all users to see all vocabulary changes
in a publication.. FR: 30. The system must allow all users to see simple (single triple)
changes in a property-value manner.. FR: 31. The system must allow all users to see changes regarding relation-
ships in a graph-like manner (subject and object = nodes, relationship
= arc). FR: 32. The system must allow all users to see all changes in a Turtle
syntax.. FR: 33. The system must allow all users to see comments regarding a
change.. FR: 34. The system must allow all users to create comments on a change.. FR: 35. The system must allow all users to see the number of comments
in the change’s comment thread.. FR: 36. The system must allow all users to see the IRIs of subjects
present in changes.. FR: 37. The system must allow all users to see the IRIs of predicates
present in changes.. FR: 38. The system must allow all users to see the rejection comments
of other users. The comment must include the author’s name and the
time elapsed from the comment’s creation.. FR: 39. The system must allow all users to view their present location
inside the publication.. FR: 40. The system must allow gestors of vocabularies that are present
in the publication to accept changes regarding their gestored vocabulary.

41

5. Design of the system
. FR: 41. The system must allow gestors of vocabularies that are present

in the publication to reject changes regarding their gestored vocabulary.. FR: 42. The system must allow the gestor who rejected a change to
create a rejection comment which must be at least ten characters long.. FR: 43. The system must allow gestors that made a decision (approve
or reject) on a change to undo their decision.. FR: 44. The system must allow gestors to see their decision (approval or
rejection) on a change.. FR: 45. The system must show an altered change message for changes
that were already processed by a particular gestor but got revised later.. FR: 46. The system must allow gestors to dismiss the altered change
message.. FR: 47. The system must always show gestors the first unrevised change
when starting or resuming a review of a vocabulary.. FR: 48. After providing a decision to a change, the system must show
the gestor the next undecided change in the vocabulary.. FR: 49. The system must allow gestors reviewing a vocabulary to see
how many changes they have yet to decide in that vocabulary.. FR: 50. The system must allow a gestor of a vocabulary present in the
publication to reject the whole publication. The gestor must provide a
reason that is at least ten characters long.. FR: 51. The system must allow a gestor of a vocabulary present in
the publication to approve the whole publication when the publication
contains at least one approving review per each vocabulary.

42

.............................. 5.2. Non-functional requirements

5.2 Non-functional requirements

The nonfunctional requirements specify the system’s operational capabilities
and constraints. They can be referred to as quality attributes of the system
that define its performance, availability, usability, and reliability [29]. Unlike
functional requirements, the focus is not on individual features but on the
system’s overall behavior.

. NFR: 1. The application shall be localized in Czech and English.. NFR: 2. The application shall load in under 5 seconds on slow networks
(download 4Mbps).. NFR: 3. The application shall have a responsive layout.. NFR: 4. The application shall be fully operational on the versions of the
following browsers:. Chrome >= 87. Firefox >= 78. Safari >= 14. Edge >= 88. NFR: 5. The application shall be operational under Docker.

43

44

Chapter 6

Technical analysis

The technologies that may be utilized to create a front-end application are
compared in this chapter. The best option (in the context of the AL) is
chosen after the comparison is complete. The selected technical solution must
be completely functional under the AL technological stack.

6.1 Front-end library/framework

There are a lot of frameworks or libraries which can be used to build a web
application. In our comparison, we will focus only on the most popular ones.
According to the Stack Overflow survey1 in 2022, the most popular ones are
as follows:

. React.Angular2.Vue.js3

6.1.1 React

React is an open-source JavaScript library used for building user interfaces. It
is being maintained by Meta and the open-source community [30]. The main
idea behind React is the use of components which are reusable pieces of code
that represent a specific part of the user interface. These components manage

1https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe
Accessed: 19-April-2023

2https://angular.io/ Accessed: 19-April-2023
3https://vuejs.org/ Accessed: 19-April-2023

45

https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe
https://angular.io/
https://vuejs.org/

6. Technical analysis...................................
their state and can be nested into each other, resulting in a complex user
interface. Components are written in JSX4, a JavaScript extension allowing
the writing of XML-like syntax inside JavaScript code. One of the critical
features of React is its use of virtual DOM5, which allows the mapping of
in-memory representation DOM to the real DOM. The main advantage lies in
the ability to render only a specific part of the DOM when updates happen,
in contrast to rendering the whole page again. The virtual DOM makes the
re-rendering of changed parts of the website faster, resulting in a smoother
user experience.

Unlike the other technologies mentioned below, React is a library, which
means that it is entirely upon the developer to implement all the application
functionalities. Luckily many frequently occurring problems (e.g., routing,
data fetching, form handling) can be solved by using publicly available
third-party React libraries. Let us take routing as an example, which can
be implemented by using react-router6 or wouter7 (to name a few). Some
developers prefer this freedom of choice, but it can be overwhelming and
unnecessary for others.

As a solution to this problem, React-powered frameworks emerged on
the market, offering out-of-the-box support for some repeatedly occurring
problems (e.g., routing). React documentation recommends using one of the
following frameworks:

. Next.js8

. Remix9

.Gatsby10

Each offers a built-in set of functionalities that the application might need.

6.1.2 Angular

Angular is a framework for building web applications using extended HTML
syntax and TypeScript [31]. Google develops it and offers comprehensive
tools to build complex, scalable, and maintainable applications.

4https://facebook.github.io/jsx/ Accessed: 19-April-2023
5Document Object Model - https://developer.mozilla.org/en-US/docs/Web/API/

Document_Object_Model Accessed: 13-May-2023
6https://reactrouter.com/en/main Accessed: 13-May-2023
7https://github.com/molefrog/wouter Accessed: 13-May-2023
8https://nextjs.org/ Accessed: 19-April-2023
9https://remix.run/ Accessed: 19-April-2023

10https://www.gatsbyjs.com/ Accessed: 19-April-2023

46

https://facebook.github.io/jsx/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://reactrouter.com/en/main
https://github.com/molefrog/wouter
https://nextjs.org/
https://remix.run/
https://www.gatsbyjs.com/

.................................. 6.2. Component library

The basic building blocks of Angular applications are components. Com-
ponents serve as declarative representations of views, composed of sets of
screen elements that can be dynamically selected and modified by Angular.
Each component defines a class containing application data and logic and is
associated with an HTML template.

Angular components utilize services that offer specialized functionality
that is not directly tied to views. The service providers can be injected into
components as dependencies, resulting in reusable, modular code. Alongside
dependency injection, Angular also offers two-way data binding. The learning
curve is relatively steep due to the robustness of the framework.

6.1.3 Vue.js

Vue is a JavaScript framework for building user interfaces [32]. It was released
in 2014 by Evan You, who, alongside the GitHub community, develops
the framework to this day. Vue offers a declarative and component-based
programming model that uses HTML, CSS, and JavaScript. Vue utilizes
virtual DOM for quicker rendering, analogous to React. Dependency injection
and two-way data binding are supported, unlike React. As mentioned in the
introduction to this section, the community is the smallest out of the three
frameworks/libraries presented, which could be a possible drawback.

6.1.4 Conclusion

The choice of technology was rather straightforward, given that all of the
AL’s front-end applications are created using React. It would not make sense
to depart from the front-end stack because we anticipate incorporating the
new application into the AL. Because of the program’s scope and the lack of
prior knowledge of mentioned frameworks, creating the application in Vue.js
or Angular would not be practical.

We chose not to employ any React-based frameworks after giving them
some thought. We put great importance on being able to manage the project
entirely, and we would not be able to make considerable use of the offered
frameworks’ abilities.

6.2 Component library

Creating UI components from scratch can be a tedious and often redundant
process. Therefore, developers utilize component libraries that allow them to

47

6. Technical analysis...................................
use common UI components like tables or modals in their applications without
having to build them from the ground up. The prevalent UI component
libraries in AL front-end applications are Material-UI11 and React Bootstrap12.
We chose Material-UI as the preferred component library over React Bootstrap
primarily due to our prior experience with the library and the substantial
community support it receives.

6.3 JavaScript Build Process

In the following sections, we introduce two concepts that play an important
role in developing and deploying JavaScript applications. The concepts are
transpilation and source code bundling.

6.3.1 Transpilation

JavaScript is a fast-developing language that follows the ECMA script speci-
fication [33]. Major updates of this specification have been released annually
every June since 2015. That might be problematic for developers because they
do not have the guarantee that all users of their web application are using it
on the latest web browsers. To make matters worse, not even the latest web
browsers necessarily support the latest JavaScript features. To overcome this
issue, developers utilize a process called transpilation. Transpilation takes
a source code that is written in one programming language and produces
equivalent source code in another [34].

JavaScript transpilers are primarily focused on transforming the newer
versions of JavaScript into older, more compatible versions of it. They are
also utilized for transforming JSX into standard JavaScript. That is essential
for React applications because they are written using JSX.

Notable mentions of JavaScripts transpilers are listed below.

. Babel13. It can transpile ECMAScript 2015+ code into a backward-compatible
version of JavaScript. It can also transform TypeScript and JSX
into standard JavaScript.. esbuild14

11https://mui.com/ Accessed 8-May-2023
12https://react-bootstrap.github.io/ Accessed 8-May-2023
13https://babeljs.io/ Accessed 13-May-2023
14https://esbuild.github.io/ Accessed 13-May-2023

48

https://mui.com/
https://react-bootstrap.github.io/
https://babeljs.io/
https://esbuild.github.io/

...................................... 6.4. Build tool

. Considered more as a bundler, but it has transpiler features built
in. Esbuild offers the same transpilation capabilities as Babel..Typescript15.TypeScript is a superset of JavaScript that adds optional static
typing to the language. However, the code must be transpiled into
regular JavaScript before execution because static typing is not sup-
ported in standard JavaScript. TypeScript offers this transpilation.

6.3.2 Bundling

A JavaScript bundler is a tool that combines multiple JavaScript files and their
dependencies into a single file [35]. Creating a single file that contains all the
necessary code for the application to function is essential. Without bundling,
developers would need to manually keep track of all the dependencies in
their code, which is almost impossible with a large application. By utilizing
bundling, developers can write their code in separate files, which is vital
for code maintainability, and still be sure that the final product will be
operational without worrying about the complicated dependency resolution.

One of the setbacks of bundling is the resulting file’s potential size. For a
large application, creating a single bundle would not be efficient. Browsers
would have to download the entire application before using it, making the
website’s load time unnecessarily long. We can solve this by creating more
smaller bundles, which are downloaded only when they are needed. As a
result, browsers send out more network queries, but the website loads much
faster.

Examples of popular bundlers are listed below:

.Webpack16. Rollup17. esbuild

6.4 Build tool

Even though the decision to create a React application was already established,
it is still necessary to determine which build tool will be used for transpiling

15https://www.typescriptlang.org/ Accessed 13-May-2023
16https://webpack.js.org/ Accessed 13-May-2023
17https://rollupjs.org/ Accessed 13-May-2023

49

https://www.typescriptlang.org/
https://webpack.js.org/
https://rollupjs.org/

6. Technical analysis...................................
and bundling production code and serving the local development server.
Although it is technically possible to not use any of the available build tools,
the official React documentation and the community agree that using them
is preferable. In the following section, we introduce two build tools, Create
React App and Vite, between which the decision was made.

6.4.1 Create React App

Create React App18 (CRA) is a build tool that helps developers create new
React applications. The tool creates a project folder structure with essential
files, sets up the development server, and provides bundling and transpiling
of the final code.

CRA was the way to start a new React project for a long time. The React
team even recommended it in their official React documentation. However,
CRA suffers from performance drops in development when a project grows
in size. The reason is that CRA uses webpack, which bundles the entire
application before it is locally served. This bundling creates a longer start-up
time for the development server and a longer time to reflect code changes.

React applications in AL use this approach, which is understandable
considering the time when they were created. However, the React team no
longer recommends that developers start a new React project with CRA.
The CRA approach was recommended in the old React documentation [36],
but with the release of the new version, all references to CRA were deleted,
favoring the use of Vite or React-based frameworks instead [30].

6.4.2 Vite

Vite19 is a build tool that can be used to create React, Vue.js, Svelte20,
Preact21, or Lit22 applications. It offers the same functionality as CRA while
offering developers a much faster development server than CRA’s solution [37].
The server start-up time and updates are faster thanks to the utilization of
the build processes in the following manner. Vite first splits the modules in
the application into two categories: dependencies and source code.

Dependencies are pieces of code that are not expected to change frequently
during development. (e.g., npm packages) These dependencies are pre-bundled

18https://create-react-app.dev/ Accessed: 5-April-2023
19https://vitejs.dev/ Accessed 5-April-2023
20https://svelte.dev/ Accessed 5-April-2023
21https://preactjs.com/ Accessed 5-April-2023
22https://lit.dev/ Accessed 5-April-2023

50

https://create-react-app.dev/
https://vitejs.dev/
https://svelte.dev/
https://preactjs.com/
https://lit.dev/

...................................... 6.4. Build tool

with esbuild, which offers 10-100x faster bundle time than JavaScript-based
bundlers. [38] [39]

Source code is a category containing code that not only contains pure
JavaScript but has some parts that need transforming, JSX, for example. It
is expected that code in this category will be modified often. This code is
served over native ECMAScript modules (ESM) [40], and it is the browser’s
responsibility to handle the job of the bundler. Vite only transforms and
serves the requested code by the browser.

The important thing to note is that this approach is used only during
the application’s development phase. When building for production, the
native ESM approach is not used. The whole code is bundled and sent to the
client when building the application for production. One potential downside
of using Vite is the smaller community since it is quite a new approach to
creating React applications (released in 2020).

6.4.3 Conclusion

Even though AL uses CRA in all front-end applications, we decided to use
Vite instead. It serves a better developer experience without any signifi-
cant downsides. One potential pitfall is the default naming convention of
environment variables. CRA uses the ’REACT_APP_’ prefix, while Vite
uses ’VITE_.’ This difference in prefixes becomes problematic when using
a shared assembly line package23. Nevertheless, we decided not to use the
shared assembly line package in this project. The reason behind this decision
is explained in the implementation section (7.2).

CRA Vite
Released 2016 2020
Dev server Bundle based Native ESM
Prod. bundler Webpack Rollup
JS standard
default support >= ECMAScript 2015 >= ECMAScript 2015

Typescript
support Yes Yes

Recommended by
React team No Yes

Table 6.1: Comparison of Create React App and Vite

23https://github.com/datagov-cz/assembly-line-shared Accessed 9-May-2023

51

https://github.com/datagov-cz/assembly-line-shared

6. Technical analysis...................................
6.5 Back end

Our front-end application requires a server that would handle the calculation
of changed triples, management of the review process data in a database,
and persistence of the approved publications in SGoV. Such a server was
developed by Bc. Michal Švagr and its source code can be found on GitHub24.
The communication between the two is achieved by using the server’s publicly
available REST API [41].

24https://github.com/mighantos/checkit-server Accessed: 15-May-2023

52

https://github.com/mighantos/checkit-server

Chapter 7

Implementation

This chapter provides an overview of the technologies utilized in the project
and outlines the steps we took to enhance the user experience. We also clarify
why we handled authentication without using the shared AL package.

7.1 Technological stack

We built the application with React v18 and used the functional component
approach for the component declaration [42]. As mentioned in the analysis
(section: 6.1.4), we are not using any react-based framework. Therefore,
we had to leverage publicly available libraries to solve frequently occurring
problems (e.g., routing). The list below states a problem alongside a library
that has been utilized to help solve that problem.

. Routing. React Router1. Language localization. React Intl2.Global state. Redux3. Network requests, Optimistic UI updates
1https://reactrouter.com/en/main Accessed 9-May-2023
2https://formatjs.io/docs/react-intl/ Accessed 9-May-2023
3https://redux-toolkit.js.org/ Accessed 9-May-2023

53

https://reactrouter.com/en/main
https://formatjs.io/docs/react-intl/
https://redux-toolkit.js.org/

7. Implementation....................................
. RTK query4

.Authentication

.OIDC-client5

. Efficient rendering of large data sets

. React Virtuoso6

7.2 Authentication

The AL tools employ a shared React component that provides them with an
authentification mechanism and URL addresses of the other tools. The React
component is published as an NPM7 package that the tools download and use
as a top-level component. The main purpose of this component is to reduce
the amount of code needed for providing the authentification mechanism,
which is the same for all the front-end applications of AL. However, the
component was built with the technologies of the front-end tools in mind. For
example, the component relies on all the tools being built using CRA, which
requires the use of a specific prefix for environment variables. These variables
are then parsed by the component and returned back to the tools. That makes
the package almost unusable for any other building tool. Apart from having
a strong connection to CRA (which we do not use), the component uses an
outdated npm package (oidc-client8 in version 1.11.5) for OIDC standard
communication.

These reasons led us to develop the authentification mechanism again,
utilizing the newest version of the package used in the shared component.

7.3 User experience

To provide an enjoyable user experience, we needed to ensure that pages were
fast to load and quick to respond to user interaction.

4https://redux-toolkit.js.org/rtk-query/overview Accessed 9-May-2023
5https://authts.github.io/oidc-client-ts/ Accessed 9-May-2023
6https://virtuoso.dev/ Accessed 9-May-2023
7https://www.npmjs.com/ Accessed 9-May-2023
8https://github.com/IdentityModel/oidc-client-js Accessed 20-May-2023

54

https://redux-toolkit.js.org/rtk-query/overview
https://authts.github.io/oidc-client-ts/
https://virtuoso.dev/
https://www.npmjs.com/
https://github.com/IdentityModel/oidc-client-js

................................... 7.3. User experience

7.3.1 Rendering of large datasets

It is critical to consider how the dataset’s rendering strategy may affect
the application’s performance when presenting a sizeable data collection.
Degraded performance can hurt the system’s usability, making its users less
efficient. We can show how three different rendering strategies affect the
system’s performance. The figure below (7.1) shows the approaches visually,
with a blue rectangle indicating the viewport, a black rectangle marking that
the element is present in DOM, and gray demonstrating the opposite.

Figure 7.1: Different rendering approaches of large datasets

. Render all. It renders all elements on the initial render. Causing long page
loads and unnecessarily large DOM size. Infinite scroll. It renders only a limited subset of elements on the initial render.
The rest of the elements is shown upon request (scroll). However,
the already rendered elements stay in the DOM, also causing its
size to be increased.. Pagination

55

7. Implementation....................................
. It renders only a limited subset of elements on the initial render.

The DOM does not get larger because previously rendered elements
get replaced by new ones. However, the look of pagination might
only be suitable for some applications.

We can see that all of the three mentioned techniques have their short-
comings. A rendering concept called virtualization was created to overcome
those problems. Virtualization provides capabilities of infinite scroll without
keeping the nonvisible (previously rendered) elements in the DOM, making
the rendering technique highly efficient.

Figure 7.2: Virtualization rendering techniques on a large dataset

Because the pagination look is unsuitable for our application, we had to
use the virtualization approach to ensure a good user experience.

7.3.2 Optimistic updates

We used the optimistic UI update design pattern to make the application feel
quicker and more responsive [43]. The idea behind this pattern is to make the
UI behave as if a change (mutation of data) made by the user was successful
prior to getting confirmation from the server that it had been carried out. If
an error happens and the server does not return a confirmation of the action,
the UI must return to its original state.

Optimistic UI update pattern is only applicable to use cases where the
developer is aware of the altered resource’s state after the mutation has
occurred in advance. To put it another way, a developer does not rely on
the information contained in the confirmation message. For the UI, the mere

56

........................... 7.4. Overview of implemented features

confirmation that a resource was updated is sufficient. For example, adding
likes on social media posts is usually done with an optimistic UI update
approach. Users do not have to wait until a confirmation from a server is
returned to let users know they added a like to a particular post. The like
(mutation of data) is added instantaneously, making the application feel faster
than it actually is.

We impose this strategy on various users’ actions. For example, the approval
or rejection of a change is done instantaneously, not holding the user back
from reviewing the remaining changes in the publication. Another example
is the action of requesting a gestor role. Users see a badge indicating the
request was created immediately after interacting with the request button,
eliminating the need for blocking loading spinners that would slow down the
user.

7.4 Overview of implemented features

In the process analysis (section 4.1), we identified several requirements that a
review process platform should meet in order to ensure the process’s efficacy
and accuracy. Section 5.1 described the system’s functional requirements,
which were implemented to allow the new process to function in the new
CheckIt tool. Let us inspect how the platform requirements are implemented
in the application.

7.4.1 User-friendly data visualization

We visualize the data as close to the rest of the AL tools as possible. For a
single triple change, we show the data in a property-value manner (similar to
TermIt, figure: 7.3). Thus for a predefined set of predicates, we replace their
IRIs with the language-typed labels used in TermIt or OG. For the predicates
that do not have labels shown in TermIt or OG, we offer CheckIt’s custom
labels or show the predicates’ full IRIs.

Figure 7.3: Single triple change visualization

57

7. Implementation....................................
Relationships are shown visually using nodes connected by arcs (similar to

OG, figure: 7.4). For users that can make use of the Turtle syntax (similar to
GH, figure: 7.5), we provide the option to see the changes in their raw Turtle
form.

Figure 7.4: Relationship visualization

Figure 7.5: Change Turtle output

All visualizations contain a color indicator that tells the user whether the
triples are newly created (green), modified (orange), or deleted (red). When
a triple object is modified, we show the object’s previous value next to the
new one so the reviewers better understand what exactly was modified.

7.4.2 Communication

Communication among reviewers and other system users is possible in the
discussion thread attached to each change. Having a separate thread per
each change makes it easier for everyone to understand which change is being
discussed. In the discussion thread, gestors can request modifications to the
discussed change or debate the meaning of the change with other system
users.

Figure 7.6: Comment in a discussion thread

58

........................... 7.4. Overview of implemented features

7.4.3 Defined user access

In section 4.3 we presented three roles that are needed for the new set
of processes. These roles define what the users are eligible to do in the
new process and therefore define what actions are offered to them in the
CheckIt application. Let us point out specific examples where the UI changes
accordingly to the user role.

The administrator panel is a section of the application accessible only
to administrators as it offers management of the gestor and administrator
roles. To prevent unauthorized access to this section, CheckIt hides all the
navigational elements leading to the panel from non-administrators (figure:
B.1). Also, when a user who is not an administrator requests the administrator
panel through its URL, CheckIt displays a "Forbidden Access" message.

Figure 7.7: Unauthorized access message

The list of changes in a publication also changes to reflect the users’ role
properly. Gestors are offered options for processing the changes, while the
rest of the users can access only the changes’ content and attached discussion
threads (figure: B.10).

The last notable mention is the approval or rejection of entire publications.
Only eligible gestors are provided with the options to process the publication
(figure: B.8).

7.4.4 Collaboration

We defined the new review process to allow multiple users to participate in
a single publication review. How users collaborate on reviews is thoroughly
described in section 4.4.2 and the primary UI features used to do so were
mentioned in the previous sections (defined user access and communication).
However, CheckIt still offers some additional functionalities that help users
in their collaborative efforts.

First, we can mention the rejection comments on changes. These comments
are shown right next to the changed data so every user can see them.

59

7. Implementation....................................

Figure 7.8: Rejection comment on a change

Gestors who processed a change that was later revised must be made aware
of it. We notify the gestors by displaying a special message next to the change
that has to be dismissed by the gestor.

Figure 7.9: Updated change that was already approved

Another important feature that increases the efficiency of the new review
process is showing who already approved a vocabulary inside a publication.
For gestors, this is crucial because they do not need to go over changes that
some other gestor has already approved.

Figure 7.10: Approved vocabulary in a publication

Collaboration would not be possible without UI support for requesting and
managing the gestor role. We already mentioned the administrator panel
used for this exact purpose. Administrators can use the admin panel to

60

........................... 7.4. Overview of implemented features

assign a gestor role to users and evaluate incoming gestoring requests (figures:
B.2). Users create these requests in a section of the application where all the
SGoV vocabularies are listed. In the list, users can see which vocabularies
are already gestoring and which are awaiting an evaluation of their request
from an administrator (figure: B.11).

Lastly, users are notified about the relevant actions of other users by
a personalized notification system. The notifications are made to inform
relevant users about new or updated publications, created comments, and
created or processed gestoring requests.

Figure 7.11: Notifications

61

62

Chapter 8

Testing

Software testing plays an important role during the software development
process. Incorporating software testing in development is beneficial for various
reasons. It increases the software’s quality by identifying errors that cause the
system not to work as intended. Early issue detection and resolution greatly
reduce the cost and time needed for resolving problems later in development
or during production. A well-tested software should perform reliably and
should lead to higher customer satisfaction [44].

Software testing is divided into two categories, automated and manual
testing. Automated testing utilizes the use of specialized software tools
or frameworks to execute pre-defined test cases that verify the software
functionalities. Having the test automated allows for their fast and repeated
execution. That makes them particularly useful for regression testing, which
ensures that previously tested software performs the same after it was modified
[45].

Manual testing is done by people, making the test cases slower to execute
and possibly more expensive in contrast to automated testing. Depending on
the chosen testing method, the test cases might be defined precisely, giving the
tester step-by-step instructions on what needs to be done or bit ambiguously,
allowing the tester to explore the application more freely. While giving
testers step-by-step instructions might ensure that the outlined path works
as expected, the free exploration approach helps uncover hidden problems
that could otherwise remain undetected.

We used both manual and automated approaches to test our application.
In the following section, we describe unit testing, our selected approach for
automated testing, and the scenario testing technique that was used for
manual testing.

63

8. Testing
8.1 Unit testing

Unit testing is a type of software testing that is focused on testing small units
of the application in isolation to verify their correctness. The isolation is
achieved using test doubles, which provide functionalities of other application
parts [46]. Typically, unit tests are automated tests created and executed by
the software developers [47].

During the development of CheckIt, we utilized Vitest1 as a unit test
framework. Together with the React-testing library2 , we tested individual
components in the application to ensure their correctness.

8.2 Scenario testing

We employed a user testing strategy known as scenario testing for manual
testing. Scenario testing is based on creating fictional but credible stories
(scenarios) that demonstrate real-world usage of the software. The scenarios
do not contain a step-by-step guide of what needs to be done but rather tell
a compelling story that makes the tester feel like an end-user of the software
with an objective they need to complete [48].

The main advantage of scenario-based testing is the gained understanding
of how users interact with the software, making the developer understand
how intuitive and usable the software is to its end users. Apart from better
understanding the user experience, scenario testing increases the overall test
coverage of the system because each scenario typically covers multiple test
cases at once.

8.2.1 System usability scale

We evaluate the usability of the system with the System Usability Scale
(SUS) [49]. The SUS is a widely used questionnaire-based tool designed to
measure the perceived usability of systems, applications, and websites [50].
The questionnaire consists of ten statements. Respondents are asked to rate
their level of agreement or disagreement with each statement using the Likert
Scale. The Likert scale is a five-point scale that ranges from strongly disagree
(scale position = 1) to strongly agree (scale position = 5).

The statements are as follows:
1https://vitest.dev/ Accessed 10-May-2023
2https://testing-library.com/docs/react-testing-library/intro Accessed 10-

May-2023

64

https://vitest.dev/
https://testing-library.com/docs/react-testing-library/intro

..................................... 8.3. User testing..1. I think that I would like to use this system frequently...2. I found the system unnecessarily complex...3. I thought the system was easy to use...4. I think that I would need the support of a technical person to be able to
use this system...5. I found the various functions in this system were well integrated...6. I thought there was too much inconsistency in this system...7. I would imagine that most people would learn to use this system very
quickly...8. I found the system very cumbersome to use...9. I felt very confident using the system....10. I needed to learn a lot of things before I could get going with this system.

The SUS yields a single number (SUS score), which serves as a composite
indicator of the system’s overall usefulness. To calculate the score, we sum
the value of all items in the questionnaire and multiply it by 2.5 to obtain
the final result. The value of items is calculated in the following manner. For
items 1,3,5,7 and 9, the score contribution is the scale position minus one.
For items 2,4,6,8 and 10, the contribution is five minus the scale position.
After summing and multiplying the values, the final result (SUS score) ranges
between 0 and 100. Research shows that a SUS score that is higher than 68
would be considered above average, and anything lower is below average [51].

8.3 User testing

We conducted the user testing on an instance of AL that was already running
on the Czech Technical University servers. The AL instance was updated to
include the CheckIt application3 and the CheckIt server.

Users were following testing scenarios defined in the appendix (A). The
scenarios were focused on two primary user actions: requesting a gestor role
and performing reviews of publications. After each scenario, testers rated the
difficulty of achieving the scenario’s objective and optionally wrote remarks
regarding the task. When testers finished all five scenarios, they rated the
application’s usability using SUS.

3Application available at: https://onto.fel.cvut.cz/modelujeme/v-n%C3%A1stroji/
checkit/

65

https://onto.fel.cvut.cz/modelujeme/v-n%C3%A1stroji/checkit/
https://onto.fel.cvut.cz/modelujeme/v-n%C3%A1stroji/checkit/

8. Testing
Our user testing involved a total of six testers. The results of the user

testing are displayed below, beginning with the testers’ evaluation of how
difficult it was to complete a testing scenario. The numbers in the table (8.1)
represent how many testers assign the mentioned difficulty in the column to
a particular scenario.

Testing scenario Without
difficulty

Slightly
difficult

Very
difficult

Could not
finish

Logging in 6 0 0 0
Requesting a gestor role 3 3 0 0
Positive review 5 1 0 0
Approving publication 4 1 1 0
Negative review 5 1 0 0

Table 8.1: Perceived difficulty of finishing the test scenarios

The SUS evaluation turned out very positive. The lowest score achieved
was 75, while the highest reached 95 points. The average and our final score
across all testers is 84.5 points, which is above the 68 points threshold, making
the system above average in terms of usability.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Score
Tester 1 3 2 3 2 4 1 5 2 3 1 75
Tester 2 5 1 5 1 5 1 4 2 5 1 95
Tester 3 4 1 4 2 5 1 5 1 3 1 82.5
Tester 4 5 1 5 1 4 1 4 1 3 1 90
Tester 5 4 2 4 1 4 2 3 4 5 1 75
Tester 6 5 2 5 1 4 2 4 1 5 1 90

Table 8.2: SUS scores

8.3.1 Identified shortcomings

User testing identified a couple of issues that, if addressed, could lead to
greater user satisfaction with the application.

One tester had a serious problem approving a publication after successfully
finishing the vocabulary review. The required step back to the publication
overview was not clearly communicated, making the tester return to the
home page. Ultimately, the tester approved the publication but rated the
experience negatively due to the lack of clear instructions after finishing the
vocabulary review. We can solve this problem by providing more precise
guidance after a review is finished and offering a go-back button redirecting
users to the publication overview page.

66

..................................... 8.3. User testing

The user testing also exposed a bug in the application that showed an
incorrect number of unread notifications. That resulted in the number of
unread notifications decreasing to negative values when users interacted with
them. The cause for the bug was not updating the unread counter after a
new notification was fetched. However, this bug has been fixed and is no
longer present in the application.

Lastly, let us list some possible improvements that were mentioned directly
by testers or resulted from the testers’ complaints:

.Making the list outputs (changes, publications, vocabularies) to use the
whole screen vertically..With the change list, the issue is present only on 1440p resolution

monitors and higher..Add the ability to cancel a gestoring request.. Highlighting a list row over which a user has a cursor..The interaction buttons are at the end of the lists’ row, which can
be problematic on larger monitors without row highlighting.. Better indicate that the sidebar is expandable.

67

68

Chapter 9

Conclusion

This thesis introduced readers to the technologies of the Semantic Web,
starting with RDF and the structure of triples. It then introduced Turtle, a
concrete syntax for RDF used in the AL, and exemplified its syntax with a
comparison to N-Triples syntax. The thesis then explained and showcased
some of the well-known RDF vocabularies the AL utilizes.

After providing readers with the necessary technological background of the
Semantic Web, we introduced the AL and its key concepts. We presented
terms, the basic building blocks of all vocabularies in SGoV, and we outlined
the internal structure of these vocabularies. Then the tools with which users
create these vocabularies and the terms within them were presented. After
that, the technical overview of the whole AL was provided.

Having outlined how the AL tools work, we focused on the process of
reviewing changes originating from them. We explained the importance of an
adequate review process and set the general requirements for a platform that
would enable such process. We then looked at how the AL’s current review
platform met these requirements and identified serious flaws in the review
process that are caused by the limitations of the platform. To improve the
review process, we outlined the foundation of a new platform, an application
called CheckIt, that would meet our stated general requirements and would
be designed to work within the AL. We defined a new review process alongside
new entities and precisely defined user roles that the new platform would
support and therefore solve the identified issues of the current review process.

We then defined the functional and non-functional requirements for the
new solution, ultimately defining the application’s scope. Then we analyzed
available technologies used for building web applications. The technologies
were compared, and their underlying concepts explained, leading to the
decision to build a React application and utilize Vite as the build tool. Then
we detailed how the new application was implemented and demonstrated how
the new solution fulfills the general requirements of a review platform. The

69

9. Conclusion......................................
last chapter was focused on software testing. We explained how we tested the
application using automated and manual testing and summarised the results
of the user testing.

9.1 Evaluation

The newly created CheckIt application is a solid replacement for the current
review process solution that uses GH, as it offers a user-friendly way of
evaluating changes applied to SGoV and has well-defined rules for who can
evaluate which changes. The user tests, which were very positive in terms
of user-friendliness, testify to the overall success of the implementation. By
making CheckIt an integral part of the AL, users would benefit from the new,
more transparent, and approachable review process in which they could also
participate. Also, the vocabulary manipulation workflow would take place
entirely within the tools provided by the AL, making the toolset complete
and not reliant on any external tools.

9.2 Future work

CheckIt’s final implementation fulfills every functional requirement described
in section 5.1. However, there are still some enhancements, which we outline
below, that could further improve the user experience.

9.2.1 Responsivity improvements

Even though the application is built with responsivity in mind, some edge
cases still exist where the user interface does not reflect the screen dimension
properly. For example, navigational elements displayed on a change can
sometimes collide with the rest of the change’s content. Fixing these minor
issues could improve the overall users’ satisfaction with the software.

9.2.2 Extension of known predicate IRIs

The predefined set of predicate IRIs that gets transformed into a localized
label currently contains only the most used IRIs in the AL. This set can
always get extended to cover more IRIs that could originate from the AL
vocabulary manipulation process. Having more IRIs transformed into labels
helps the user-friendly data visualization objective.

70

..................................... 9.2. Future work

9.2.3 Editing of comments

Currently, users can only add new comments to a discussion thread without
the possibility of editing them. Adding this feature could improve the clarity of
a discussion, avoiding unnecessary comments that contain corrected grammar
or fixed typos.

9.2.4 Diagram changes

Ontology engineers create semantic relationships in OG by placing terms on
canvases and linking them together, which results in a diagram. However,
CheckIt displays the relationships individually, ignoring where they appear
in the diagram and how the overall diagram looks. Displaying the entire
diagram with the highlighted publication changes could help gestors better
evaluate the publication.

9.2.5 Full incorporation into the AL

To fully incorporate CheckIt into the AL vocabulary workflow, a couple of
modifications to the MC are required. The publish button, which creates the
pull request in GitHub by calling the SGoV server, should be replaced with a
solution that calls only the CheckIt server. The server will find the changes
and send them to our CheckIt application, where gestors can process them.
Also, every time a user ends a project in MC, the CheckIt server must be
notified so that any active publication that was created as a result of that
project is deleted as well.

71

72

Bibliography

[1] The Publications Office of the European Union. What is open data?
[Online; accessed 23-Apr-2023] https://data.europa.eu/en/trening/
what-open-data.

[2] European Social Fund. Rozvoj datových politik v oblasti zlepšování
kvality a interoperability dat veřejné správy. [Online; accessed 23-Apr-
2023] https://www.esfcr.cz/projekty-opz/-/asset_publisher/
ODuZumtPTtTa/content/rozvoj-datovych-politik-v-oblasti-
zlepsovani-kvality-a-interoperability-dat-verejne-spravy.

[3] KODI. Kodi - rozvoj datových politik v oblasti zlepšování kvality a
interoperability dat veřejné správy. [Online; accessed 23-Apr-2023]
https://data.gov.cz/kodi/.

[4] Karel Klíma, Petr Křemen, Martin Ledvinka, Michal Med, Alice Binder,
Miroslav Blaško, and Martin Nečaský. Assembly line for conceptual
models. [Online; accessed 23-Apr-2023] https://www.semantic-web-
journal.net/content/assembly-line-conceptual-models-0.

[5] Antoine Isaac and Ed Summers. SKOS simple knowledge organization
system primer. W3C note, W3C, August 2009. [Online accessed 9-Apr-
2023] https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/.

[6] Bijan Parsia, Markus Krötzsch, Sebastian Rudolph, Peter Patel-
Schneider, and Pascal Hitzler. OWL 2 web ontology language primer
(second edition). W3C recommendation, W3C, December 2012. [On-
line accessed 11-Apr-2023] https://www.w3.org/TR/2012/REC-owl2-
primer-20121211/.

[7] Rozvoj datových politik v oblasti zlepšování kvality a interoperability
dat veřejné správy . C5v2 - koncepce sémantického slovníku pojmů pro
potřeby konceptuálního datového modelování agend. [Online; accessed
23-Apr-2023] https://data.gov.cz/kodi/v%C3%BDstupy/C5V2.pdf.

73

https://data.europa.eu/en/trening/what-open-data
https://data.europa.eu/en/trening/what-open-data
https://www.esfcr.cz/projekty-opz/-/asset_publisher/ODuZumtPTtTa/content/rozvoj-datovych-politik-v-oblasti-zlepsovani-kvality-a-interoperability-dat-verejne-spravy
https://www.esfcr.cz/projekty-opz/-/asset_publisher/ODuZumtPTtTa/content/rozvoj-datovych-politik-v-oblasti-zlepsovani-kvality-a-interoperability-dat-verejne-spravy
https://www.esfcr.cz/projekty-opz/-/asset_publisher/ODuZumtPTtTa/content/rozvoj-datovych-politik-v-oblasti-zlepsovani-kvality-a-interoperability-dat-verejne-spravy
https://data.gov.cz/kodi/
https://www.semantic-web-journal.net/content/assembly-line-conceptual-models-0
https://www.semantic-web-journal.net/content/assembly-line-conceptual-models-0
https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://data.gov.cz/kodi/v%C3%BDstupy/C5V2.pdf

9. Conclusion......................................
[8] Martin Ledvinka, Petr Křemen, Lama Saeeda, and Miroslav Blaško.

Termit: A practical semantic vocabulary manager. Technical re-
port, Czech Technical University in Prague, May 2020. [Online ac-
cessed 25-Apr-2023] https://www.researchgate.net/publication/
341541783_TermIt_A_Practical_Semantic_Vocabulary_Manager.

[9] Alice Binder and Petr Křemen. Ontographer: a web-based tool for
ontological conceptual modeling. Technical report, Czech Technical
University in Prague, 2021. [Online accessed 25-Apr-2023] https://
ceur-ws.org/Vol-3115/paper2.pdf.

[10] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 turtle. W3C
recommendation, W3C, February 2014. [Online accessed 20-Jan-2023]
https://www.w3.org/TR/2014/REC-turtle-20140225/.

[11] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific american, 284(5):34–43, 2001.

[12] RDF Core Working Group. Rdf. https://www.w3.org/RDF/. [Online;
accessed 5-Jan-2023].

[13] M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs).
RFC 3987, IETF, 2005.

[14] Guus Schreiber and Yves Raimond. RDF 1.1 primer. W3C note, W3C,
June 2014. [Online accessed 9-Jan-2023] https://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624/.

[15] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers
(uri): Generic syntax. RFC 2396, Internet Engineering Task Force,
August 1998. [Online Accessed: April 18, 2023] https://www.rfc-
editor.org/info/rfc2396.

[16] David Wood, Richard Cyganiak, and Markus Lanthaler. RDF 1.1 con-
cepts and abstract syntax. W3C recommendation, W3C, February
2014. [Online accessed 9-Jan-2023] https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/.

[17] Patrick Hayes and Peter Patel-Schneider. RDF 1.1 semantics. W3C
recommendation, W3C, February 2014. [Online accessed 20-Jan-2023]
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.

[18] Gavin Carothers and Andy Seaborne. RDF 1.1 n-triples. W3C recom-
mendation, W3C, February 2014. [Online Accessed: April 18, 2023]
https://www.w3.org/TR/2014/REC-n-triples-20140225/.

[19] W3C Working Group. Vocabularies. [Online; accessed 8-Jan-2023]
https://www.w3.org/standards/semanticweb/ontology.

[20] Ramanathan Guha and Dan Brickley. RDF schema 1.1. W3C rec-
ommendation, W3C, February 2014. [Online accessed 20-Jan-2023]
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

74

https://www.researchgate.net/publication/341541783_TermIt_A_Practical_Semantic_Vocabulary_Manager
https://www.researchgate.net/publication/341541783_TermIt_A_Practical_Semantic_Vocabulary_Manager
https://ceur-ws.org/Vol-3115/paper2.pdf
https://ceur-ws.org/Vol-3115/paper2.pdf
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/RDF/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.rfc-editor.org/info/rfc2396
https://www.rfc-editor.org/info/rfc2396
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

..................................... 9.2. Future work

[21] Alistair Miles and Sean Bechhofer. SKOS simple knowledge organization
system reference. W3C recommendation, W3C, August 2009. [On-
line accessed 9-Apr-2023] https://www.w3.org/TR/2009/REC-skos-
reference-20090818/.

[22] Antoine Isaac and Ed Summers. SKOS simple knowledge organiza-
tion system primer - concepts. W3C note, W3C, August 2009. [On-
line accessed 9-Apr-2023] https://www.w3.org/TR/2009/NOTE-skos-
primer-20090818/#secconcept.

[23] Dublin Core Metadata Initiative. About dublin core. [Online; accessed
9-Apr-2023] https://www.dublincore.org/about/.

[24] Dublin Core Metadata Initiative. Dublin Core Metadata El-
ement Set, Version 1.1, 2012. [Online; accessed 9-Apr-
2023] https://www.dublincore.org/specifications/dublin-core/
dcmi-terms/#section-7.

[25] Giancarlo Guizzardi, Claudenir M. Fonseca, Alessander Botti Benevides,
João Paulo A. Almeida, Daniele Porello, and Tiago Prince Sales. En-
durant types in ontology-driven conceptual modeling: Towards ontouml
2.0. In Juan C. Trujillo, Karen C. Davis, Xiaoyong Du, Zhanhuai Li,
Tok Wang Ling, Guoliang Li, and Mong Li Lee, editors, Conceptual
Modeling, Cham, 2018. Springer International Publishing.

[26] Shakirat Sulyman. Client-server model. IOSR Journal of Computer
Engineering, 16:57–71, 01 2014.

[27] Ruth Malan, Dana Bredemeyer, et al. Functional requirements and
use cases. Bredemeyer Consulting, 2001. [Online Accessed: May
10, 2023] https://citeseerx.ist.psu.edu/document?repid=rep1&
type=pdf&doi=aceaa41855c38aebe7c823e60e94b39506a92b99.

[28] Nuclino Team. Functional requirements. Nuclino. [Online Accessed:
May 10, 2023] https://www.nuclino.com/articles/functional-
requirements.

[29] Andrew Stellman and Jennifer Greene. Applied Software Project Man-
agement. O’Reilly, Sebastopol, 2006. ISBN: 0-596-00948-8.

[30] React Development Team. React. [Online; accessed 19-Apr-2023] https:
//react.dev/.

[31] Angular Development Team. What is angular? [Online; accessed
19-Apr-2023] https://angular.io/guide/what-is-angular.

[32] Vue.js Development Team. Introduction - what is vue.js? [Online; ac-
cessed 19-Apr-2023] https://vuejs.org/guide/introduction.html#
what-is-vue.

75

https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/#secconcept
https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/#secconcept
https://www.dublincore.org/about/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#section-7
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#section-7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=aceaa41855c38aebe7c823e60e94b39506a92b99
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=aceaa41855c38aebe7c823e60e94b39506a92b99
https://www.nuclino.com/articles/functional-requirements
https://www.nuclino.com/articles/functional-requirements
https://react.dev/
https://react.dev/
https://angular.io/guide/what-is-angular
https://vuejs.org/guide/introduction.html#what-is-vue
https://vuejs.org/guide/introduction.html#what-is-vue

9. Conclusion......................................
[33] ECMA International. Ecmascript® 2023 language specification. [On-

line Accessed: May 13, 2023] https://www.ecma-international.org/
publications-and-standards/standards/ecma-262/.

[34] Devopedia. Transpiler. [Online Accessed: May 13, 2023] https://
devopedia.org/transpiler.

[35] Alberto Gimeno. How javascript bundlers work. [Online Accessed:
May 13, 2023] https://medium.com/@gimenete/how-javascript-
bundlers-work-1fc0d0caf2da.

[36] React Development Team. Create a new react app. [Online Ac-
cessed: May 13, 2023] https://legacy.reactjs.org/docs/create-
a-new-react-app.html.

[37] Nilanth. Use vite for react apps instead of cra. dev.to, 2021. [Online
Accessed: April 18, 2023] https://dev.to/nilanth/use-vite-for-
react-apps-instead-of-cra-3pkg.

[38] Evan You and Vite Contributors. Vite.js: Why vite? [Online; accessed
April 5, 2023] https://vitejs.dev/guide/why.html.

[39] Evan Wallace. Esbuild FAQ: Benchmark Details. [Online; accessed April
5, 2023] https://esbuild.github.io/faq/#benchmark-details.

[40] ECMA International. Ecmascript 2015 language specification – ecma-
262 6th edition. [Online Accessed: May 13, 2023] https://262.ecma-
international.org/6.0/#sec-modules.

[41] Mark Masse. REST API Design Rulebook: Designing Consistent REST-
ful Web Service Interfaces. O’Reilly Media, Inc., 2011.

[42] Facebook. React - components and props. [Online Accessed: May
9, 2023] https://legacy.reactjs.org/docs/components-and-props.
html#function-and-class-components.

[43] Simon Hearne. Optimistic ui patterns. [Online Accessed: May 9, 2023]
https://simonhearne.com/2021/optimistic-ui-patterns/.

[44] Andreas Spillner. Software Testing Foundations: A Study Guide for the
Certified Tester Exam. Rocky Nook, Santa Barbara, CA, 4th edition,
2014.

[45] Elfriede Dustin, Jeff Rashka, and John Paul. Automated software testing:
Introduction, management, and performance: Introduction, management,
and performance. Addison-Wesley Professional, 1999.

[46] Martin Fowler. Testdouble. [Online Accessed: May 10, 2023] https:
//martinfowler.com/bliki/TestDouble.html.

[47] Guru99. Unit testing guide. [Online Accessed: May 10, 2023] https:
//www.guru99.com/unit-testing-guide.html.

76

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://devopedia.org/transpiler
https://devopedia.org/transpiler
https://medium.com/@gimenete/how-javascript-bundlers-work-1fc0d0caf2da
https://medium.com/@gimenete/how-javascript-bundlers-work-1fc0d0caf2da
https://legacy.reactjs.org/docs/create-a-new-react-app.html
https://legacy.reactjs.org/docs/create-a-new-react-app.html
https://dev.to/nilanth/use-vite-for-react-apps-instead-of-cra-3pkg
https://dev.to/nilanth/use-vite-for-react-apps-instead-of-cra-3pkg
https://vitejs.dev/guide/why.html
https://esbuild.github.io/faq/#benchmark-details
https://262.ecma-international.org/6.0/#sec-modules
https://262.ecma-international.org/6.0/#sec-modules
https://legacy.reactjs.org/docs/components-and-props.html#function-and-class-components
https://legacy.reactjs.org/docs/components-and-props.html#function-and-class-components
https://simonhearne.com/2021/optimistic-ui-patterns/
https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TestDouble.html
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/unit-testing-guide.html

..................................... 9.2. Future work

[48] JD Cem Kaner. An introduction to scenario testing. Florida Institute
of Technology, Melbourne, pages 1–13, 2013.

[49] John Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind.,
189, 11 1995.

[50] James R Lewis. The system usability scale: past, present, and future.
International Journal of Human–Computer Interaction, 34(7):577–590,
2018.

[51] Usability.gov. System usability scale. [Online Accessed: May
10, 2023] https://www.usability.gov/how-to-and-tools/methods/
system-usability-scale.html.

77

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

78

Appendix A

Testing scenarios

A.1 Logging in

You must log in to CheckIt to do your job. Use the login details provided to
log in.

A.2 Requesting a gestor role

On your way to the office today, you met a colleague in the corridor who
told you that you had to request the right to the vocabulary: Datový slovník
OFN aktualit – slovník. The dictionary is expected to be heavily edited, and
your supervisor wants only the best employees to evaluate the changes. Since
your promotion is within reach, you get to work right away.

A.3 Positive review

As dictionary editor: Vyhláška č. 268/2009 Sb. o technických požadavcích
na stavby, you are responsible for all publications related to this vocabulary.
This means you must check all changes that modify the vocabulary and
ensure they are correct. Your good friend has informed you by email that he
has made a publication that modifies the vocabulary. Since he is a capable
modeler, you will approve all the changes.

79

A. Testing scenarios
A.4 Approving publication

Once all changes to the publication have been approved, it is necessary to
approve the entire publication and thus officially incorporate them into SGoV.
Without the approval of the whole publication, your work as a reviewer
would be wasted. See the detail of Vyhláška č. 268/2009 Sb. o technických
požadavcích na stavby publication and approve the entire publication with
the following message: "The changes comply with the decree ." If you have
failed to complete the task from the previous step, skip this task.

A.5 Negative review

The last task of the day is to check the publication COUNCIL DIRECTIVE
1999/37/EC on the registration documents for vehicles. The publication
contains a vocabulary of the same name, but the vocabulary is already
complete and should not be edited. Therefore reject all the changes in this
publication. For the change of the alternative title, write the following reason
for rejection: "The VIN code is an essential part of the concept. It is not
possible to have the concept without it".

80

Appendix B

Screenshots of the application

B.1 Home page

Figure B.1: Home page for non-administrators

81

B. Screenshots of the application

Figure B.2: Home page for administrators

B.2 Administrator panel

Figure B.3: Administrator panel options

Figure B.4: Administrator panel vocabularies list

82

................................. B.2. Administrator panel

Figure B.5: Administrator panel pending gestoring requests

Figure B.6: Administrator panel pending gestoring requests expanded

83

B. Screenshots of the application

Figure B.7: Removing gestors from a vocabulary

B.3 Publications

Figure B.8: Publication overview

84

.....................................B.3. Publications

Figure B.9: Review of changes

Figure B.10: Limited review access

85

B. Screenshots of the application
B.4 Others

Figure B.11: List of available vocabularies for users

Figure B.12: Landing page

86

Appendix C

Content of electronic attachment

application.zip
checkit-ui-main..............................Root of the project

.github
nginx......................................Nginx configuration
public...Public assets
.src.............................Source code of the application

api ... All API logic
app...................................General app directory
assets..Images
components React components
hooks..................................Custom React hooks
model .. Data model
slices...Redux slices
store..Redux store
translations..............................Localization files
App.tsx................................Top level component
main.tsx.......................................Entry point
styles.css................................Additional styles
vite-env.d.ts
window.d.ts

tests..Unit tests - setup
.env........................Development environment variables
.env.production.............Production environment variables
.eslintrc...Linter rules
.gitignore
Dockerfile
README.md Installation guide
.config.js.template
index.html
package-lock.json
package.json
tsconfig.json

87

C. Content of electronic attachment............................
tsconfig.node.json
vite.config.ts

88

	Introduction
	Data model description
	RDF
	Triples
	IRI
	Literal
	Blank node

	Turtle
	RDF Vocabularies
	SKOS
	DCMI
	OWL

	Assembly line
	Overview and basic concepts
	Term
	Vocabulary structure

	Tools
	Mission Control
	TermIt
	OntoGrapher

	Technical overview
	Front-end applications
	Servers
	Security
	Database

	Process analysis
	Review process
	Current platform - GitHub
	New platform - CheckIt
	Conclusion

	Process entities
	Change
	Vocabulary changes
	Publication

	Process participants
	User
	Vocabulary gestor
	Administrator

	Processes
	Requesting a gestor role
	Publication review

	Summary

	Design of the system
	Functional requirements
	Non-functional requirements

	Technical analysis
	Front-end library/framework
	React
	Angular
	Vue.js
	Conclusion

	Component library
	JavaScript Build Process
	Transpilation
	Bundling

	Build tool
	Create React App
	Vite
	Conclusion

	Back end

	Implementation
	Technological stack
	Authentication
	User experience
	Rendering of large datasets
	Optimistic updates

	Overview of implemented features
	User-friendly data visualization
	Communication
	Defined user access
	Collaboration

	Testing
	Unit testing
	Scenario testing
	System usability scale

	User testing
	Identified shortcomings

	Conclusion
	Evaluation
	Future work
	Responsivity improvements
	Extension of known predicate IRIs
	Editing of comments
	Diagram changes
	Full incorporation into the AL

	Bibliography
	Testing scenarios
	Logging in
	Requesting a gestor role
	Positive review
	Approving publication
	Negative review

	Screenshots of the application
	Home page
	Administrator panel
	Publications
	Others

	Content of electronic attachment

